Nav: Home

New research identifies patterns of tree distribution in African savannas

May 14, 2019

Understanding the patterns underlying vegetation distribution is vital for creating predictive models to forecast responses of natural systems to global change. Savanna ecosystems cover at least 40 percent of the global tropics, but the distribution of vegetation in savannas has long evaded understanding and characterization, making it impossible to fully capture within such a model. According to a new study published May 13th, 2019 in the journal Proceedings of the National Academy of Sciences, airborne surveys show that, on a large scale, the spatial arrangement of savanna trees follows distinct patterns that can be described mathematically regardless of variation in environmental factors.

"Concluding that some universal process governs spatial patterns in tree distributions may be premature," said lead author Carla Staver, an assistant professor of Ecology and Evolutionary Biology at Yale University. "However, we can say that, although the tree layer may look unpredictable locally, at scales relevant to prediction, such as global vegetation models, vegetation is instead strongly structured by regular statistical distributions."

These findings were derived from LiDAR data collected in Kruger National Park in South Africa by the Global Airborne Observatory (GAO) at Arizona State University's Center for Global Discovery and Conservation Science. The GAO is an airborne laboratory directed by Dr. Greg Asner that houses advanced Earth mapping technologies. Past work to determine such patterns relied on small-scale plots that failed to reveal discernable patterns or identify relationships between environmental factors, like rainfall or soil characteristics, and distribution. The high-resolution LiDAR data enabled a closer examination of tree clusters, and the large scale of the area surveyed uncovered patterns that are not discernable at smaller scales. The pattern of clusters they found at the larger scale can be explained neatly by a power law distribution, which captures significant statistical correlations that cannot be applied at a smaller scale.

"When you are looking at things from the ground, what you see is a messy jumble," Staver said. "What we found was still a jumble, but it was a very structured jumble."

Going forward, Staver and her colleagues plan to investigate whether such mathematical laws also govern the distribution of vegetation in other ecosystems. Future work also includes broadening the scope of the study to include more diverse environmental variation in the landscape surveyed.
-end-
Scientists from Arizona State University, Texas A & M University, Princeton University, University of Witwatersrand, and South African National Parks Service are co-authors of the study.

Primary funding for the study was provided by the Andrew W. Mellon Foundation and by the National Science Foundation.

Arizona State University, Center for Global Discovery and Conservation Science

Related Ecosystems Articles:

Rethinking role of viruses in coral reef ecosystems
Viruses are thought to frequently kill their host bacteria, especially at high microbial density.
Sequestering blue carbon through better management of coastal ecosystems
Focusing on the management of carbon stores within vegetated coastal habitats provides an opportunity to mitigate some aspects of global warming.
Tiny bacterium provides window into whole ecosystems
MIT research on Prochlorococcus, the most abundant life form in the oceans, shows the bacteria's metabolism evolved in a way that may have helped trigger the rise of other organisms, to form a more complex marine ecosystem with overall greater biomass.
Road salt alternatives alter aquatic ecosystems
Organic additives found in road salt alternatives -- such as those used in the commercial products GeoMelt and Magic Salt -- act as a fertilizer to aquatic ecosystems, promoting the growth of algae and organisms that eat algae, according to new research published today in the Journal of Applied Ecology.
Marine ecosystems show resilience to climate disturbance
Climate change is one of the most powerful stressors threatening marine biomes.
Ecosystems in the southeastern US are vulnerable to climate change
At least several southeastern US ecosystems are highly vulnerable to the impacts of present and future climate change, according to two new USGS reports on research conducted by scientists with Interior Department's Southeast Climate Science Center.
Islands and their ecosystems
Juliano Sarmento Cabral comes from a country with a tropical-subtropical climate.
Restoring ecosystems -- how to learn from our mistakes
In a joint North European and North American study led by Swedish researcher Christer Nilsson, a warning is issued of underdocumented results of ecological restorations.
Beach replenishment may have 'far reaching' impacts on ecosystems
UC San Diego biologists who examined the biological impact of replenishing eroded beaches with offshore sand found that such beach replenishment efforts could have long-term negative impacts on coastal ecosystems.
Overfishing increases fluctuations in aquatic ecosystems
Overfishing reduces fish populations and promotes smaller sizes in fish.

Related Ecosystems Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...