Nav: Home

Transplanted cells reveal early signs of type 1 diabetes

May 14, 2019

By the time type 1 diabetes is diagnosed, most of the insulin-producing beta cells have already been destroyed. Now, using an innovative transplantation technique, researchers at Karolinska Institutet and University of Miami Miller School of Medicine have been able to intervene to save the beta cells in mice by discovering early signs of the disease. The study is published in Diabetologia, the scientific journal of the European Association for the Study of Diabetes (EASD).

Type 1 diabetes is caused when the insulin-producing beta cells in the endocrinal part of the pancreas - the islets of Langerhans - are destroyed by an autoimmune attack. There are currently no drugs to prevent the disease developing.

Understanding the mechanisms that give rise to type 1 diabetes is essential to the development of drugs able to prevent damage to the beta cells. One major hurdle is that the disease is often discovered too late, when the beta cells are already destroyed. Scientists therefore need to find a robust diagnostic method that involves identifying early autoimmune markers.

The present study shows that the islets of Langerhans transplanted to the anterior chamber of the eye can be important reporters of autoimmunity and the development of type 1 diabetes. By studying transplanted islets of Langerhans in a mouse model with type 1 diabetes, the researchers found that the islets showed signs of inflammation long before other indicators of the disease appeared.

"This information is important as it means that treatment can be given before the insulin-producing cells have been destroyed in the autoimmune attack, which is imperative if patients are to retain their ability to secrete insulin," says study leader Per-Olof Berggren, Professor at the Department of Molecular Medicine and Surgery and the Rolf Luft Research Center for Diabetes and Endocrinology at Karolinska Institutet in Sweden and Visiting Professor at the Diabetes Research Institute, University of Miami Miller School of Medicine (USA), who developed the transplantation technique.

On monitoring the graft in real time before and after the development of type 1 diabetes, Professor Berggren and his colleague Dr Midhat Abdulreda at the Diabetes Research Institute, University of Miami Miller School of Medicine, found that the transplanted islets were attacked by the immune system in a way similar to those in the liver during type 1 diabetes.

The infiltration of immune cells took place concurrently with the signs of autoimmunity, namely inflammation in the islets and later hyperglycaemia. Guided by these early symptoms of an autoimmune reaction, the researchers were able to retard the attack on the islets with both systemic and local immunosuppression.

¬"Our study demonstrates the possibility of using eye-transplanted islets of Langerhans as a tool for improving the development of new drugs and, in combination with the local administration of immunosuppressive drugs, as a new clinical transplantation strategy for patients with type 1 diabetes," says Professor Berggren.
-end-
The study was financed with grants from the Diabetes Research Institute, the Diabetes Research & Wellness Foundation, Diabetes Wellness Sweden, the National Institutes of Health (NIH), the National Institute of Allergy and Infectious Diseases (NIAID), the Cooperative Study Group for Autoimmune Disease Prevention, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the Juvenile Diabetes Research Foundation (JDRF), the Swedish Diabetes Foundation, the Swedish Research Council, the Novo Nordisk Foundation, the Erling-Persson Family Foundation, the Strategic Research Programme in Diabetes at Karolinska Institutet, the European Research Council, the Knut and Alice Wallenberg Foundation, Skandia, the Bert von Kantzow Foundation and the Stichting af Jochnick Foundation.

Per-Olof Berggren is co-founder and MD of Biocrine, an unlisted biotech company that is using the approach of cell transplant in the anterior chamber of the eye as a research tool. Midhat Abdulreda is a consultant for the same company.

Publication: "In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice". Midhat H. Abdulreda, R. Damaris Molano, Gaetano Faleo, Maite Lopez-Cabezas, Alexander Shishido, Ulisse Ulissi, Carmen Fotino, Luis F. Hernandez, Ashley Tschiggfrie, Virginia R. Aldrich, Alejandro Tamayo-Garcia, Allison S. Bayer, Camillo Ricordi, Alejandro Caicedo, Peter Buchwald, Antonello Pileggi, Per-Olof Berggren. Diabetologia, online 14 May 2019, doi: 10.1007/s00125-019-4879-0.

Karolinska Institutet

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".