Nav: Home

Five rules to tackle antibiotic resistance

May 14, 2019

Current efforts to tackle antibiotic resistance are "not nearly radical enough", a leading scientist says.

Dr Ben Raymond, of the University of Exeter, says relying too heavily on reducing antibiotic use and discovering new drugs could lead to "disaster".

In a new study, he proposes five rules for "sustainable use". These include acting to protect new drugs before resistance becomes a problem, using more diverse antimicrobials to reduce long-term use of single drugs, and using data to design management plans for particular superbugs.

The World Health Organisation says antibiotic resistance is rising to dangerous levels worldwide, and warns of "a post-antibiotic era in which common infections and minor injuries can once again kill".

Dr Raymond, of the Centre for Ecology and Conversation on the University of Exeter's Penryn Campus in Cornwall, said: "People think the best way to tackle antibiotic resistance is to give out fewer antibiotics and find new drugs.

"Those are important steps, but this approach alone is not nearly radical enough. x

"Even if we can keep finding new drugs, disaster will follow if we use them in the same way as we use current ones.

"No drug yet discovered is evolution proof, and the typical practice of using single drugs at once, in unprotected 'monotherapies' is unsustainable.

"This 'business as usual' approach can be disastrous, as exemplified by the history of resistance in gonorrhoea and the emergence of untreatable infections.

"Resistance to new antibiotics can become widespread in two or three years, so new drugs must be partnered with more sustainable patterns of use."

The study's five rules are:
    1. Prevention. "Resistance is easier to deal with before it becomes severe," Dr Raymond said. "Antibiotics can be protected by the way you use them, for example by avoiding heavy use of single drugs for extended periods of time, as using drugs in this manner creates more 'selection pressure' - the conditions microbes need to evolve resistance."

    2. Don't rely on "fitness costs". Some plans depend on stopping use of a drug, in the hope that resistant bacteria suffer a "fitness cost" - dying out because they carry resistance genes that are no longer useful. This can work, but Dr Raymond warns that resistance to a drug does not necessarily go away just because use of that drug stops.

    3. Limit supply of mutations. One way to do this is to use combinations of antibiotics, as microbes rarely develop resistance to multiple antibiotics at once. Dr Raymond also says it's "madness" from a resistance management perspective to build up a massive supply of resistance genes in the environment. Resistance in the environment can come from waste water and use of antibiotics in animals. "As an individual you are very unlikely to have acquired an antibiotic resistance microbe from an animal, but it's highly likely that environmental contamination has helped some of the microbes in your body acquire resistance," he said.

    4. Low doses don't work, short courses might. A much greater pool of mutations can give microbes resistance to low doses of antibiotics, so such doses might help resistance evolve. Short, intensive courses of antibiotics might help patients without giving microbes the opportunity to evolve.

    5. Information is power. "If you don't know what kind of resistance is around among patients or in your hospital, you could give people the wrong drug at the wrong time," said Dr Raymond. "The more data you have, the better you can design your resistance management programmes. Resistance management programmes should target specific microbes or groups of microbes, rather than resistance in general."
Dr Raymond warns that broader lessons of resistance management from other disciplines are "not widely appreciated" among microbiologists; while evolutionary biologists and clinicians need to talk to each other much more often.

The study, partly funded by the Medical Research Council, calls for a "new philosophy in which usage is tied to a long-term commitment to sustainability".

Dr Raymond added: "Some humility in the face of natural selection can ensure that human creativity keeps pace with evolutionary innovation."
-end-
The paper, published in the journal Evolutionary Applications, is entitled: "Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management."

University of Exeter

Related Antibiotics Articles:

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
How antibiotics help spread resistance
Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.