TRAPPIST-1 planetary orbits not misaligned

May 14, 2020

Astronomers using the Subaru Telescope have determined that the Earth-like planets of the TRAPPIST-1 system are not significantly misaligned with the rotation of the star. This is an important result for understanding the evolution of planetary systems around very low-mass stars in general, and in particular the history of the TRAPPIST-1 planets including the ones near the habitable zone.

Stars like the Sun are not static, but rotate about an axis. This rotation is most noticeable when there are features like sunspots on the surface of the star. In the Solar System, the orbits of all of the planets are aligned to within 6 degrees with the Sun's rotation. In the past it was assumed that planetary orbits would be aligned with the rotation of the star, but there are now many known examples of exoplanet systems where the planetary orbits are strongly misaligned with the central star's rotation. This raises the question: can planetary systems form out of alignment, or did the observed misaligned systems start out aligned and were later thrown out of alignment by some perturbation? The TRAPPIST-1 system has attracted attention because it has three small rocky planets located in or near the habitable zone where liquid water can exist. The central star is a very low-mass and cool star, called an M dwarf, and those planets are situated very close to the central star. Therefore, this planetary system is very different from our Solar System. Determining the history of this system is important because it could help determine if any of the potentially habitable planets are actually inhabitable. But it is also an interesting system because it lacks any nearby objects which could have perturbed the orbits of the planets, meaning that the orbits should still be located close to where the planets first formed. This gives astronomers a chance to investigate the primordial conditions of the system.

Because stars rotate, the side rotating into view has a relative velocity towards the viewer, while the side rotating out of view has a relative velocity away from the viewer. If a planet transits, passes between the star and the Earth and blocks a small portion of the light from the star, it is possible to tell which edge of the star the planet blocks first. This phenomenon is called the Rossiter-McLaughlin effect. Using this method, it is possible to measure the misalignment between the planetary orbit and the star's rotation. However, until now those observations have been limited to large planets such as Jupiter-like or Neptune-like ones.

A team of researchers, including members from the Tokyo Institute of Technology and the Astrobiology Center in Japan, observed TRAPPIST-1 with the Subaru Telescope to look for misalignment between the planetary orbits and the star. The team took advantage of a chance on August 31, 2018, when three of the exoplanets orbiting TRAPPIST-1 transited in front of the star in a single night. Two of the three were rocky planets near the habitable zone. Since low-mass stars are generally faint, it had been impossible to probe the stellar obliquity (spin-orbit angle) for TRAPPIST-1. But thanks to the light gathering power of the Subaru Telescope and high spectral resolution of the new infrared spectrograph IRD, the team was able to measure the obliquity. They found that the obliquity was low, close to zero. This is the first measurement of the stellar obliquity for a very low-mass star like TRAPPIST-1 and also the first Rossiter-McLaughlin measurement for planets in the habitable zone.

However the leader of the team, Teruyuki Hirano at the Tokyo Institute of Technology, cautions, "The data suggest alignment of the stellar spin with the planetary orbital axes, but the precision of the measurements was not good enough to completely rule out a small spin-orbit misalignment. Nonetheless, this is the first detection of the effect with Earth-like planets and more work will better characterize this remarkable exoplanet system."
-end-


National Institutes of Natural Sciences

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.