Nav: Home

Portland State researcher develops new model to accurately date historic earthquakes

May 14, 2020

Three earthquakes in the Monterey Bay Area, occurring in 1838, 1890 and 1906, happened without a doubt on the San Andreas Fault, according to a new paper by a Portland State University researcher.

The paper, "New Insights into Paleoseismic Age Models on the Northern San Andreas Fault: Charcoal In-built ages and Updated Earthquake Correlations," was recently published in the Bulletin of the Seismological Society of America.

Assistant Professor of Geology at PSU Ashley Streig said the new research confirms what her team first discovered in 2014: three earthquakes occurred within a 68-year period in the Bay Area on the San Andreas Fault.

"This is the first time there's been geologic evidence of a surface rupture from the historic 1838 and 1890 earthquakes that we knew about from newspapers and other historical documents," Streig said. "It basically meant that the 1800s were a century of doom."

Building on the 2014 study, Streig said they were able to excavate a redwood slab from a tree felled by early Europeans, from one meter below the surface in the Bay Area. The tree was toppled before the three earthquakes in question occurred. That slab was used to determine the precise date logging first occurred in the area, and pinpointed the historic dates of the earthquakes. Further, they were able use the slab to develop a new model for determining recurrence intervals and more exact dating.

Streig used the dating technique wiggle matching for several measured carbon 14 samples from the tree slab and compared them with fluctuations in atmospheric carbon 14 concentrations over time to fingerprint the exact death of the tree and confirm the timing of the earthquakes. Because the researchers had an exact age from the slab, they were able to test how well the most commonly used material, charcoal, works in earthquake age models.

Charcoal is commonly used for dating and to constrain the ages of prehistoric earthquakes and develop an earthquake recurrence interval, but Streig said the charcoal can be hundreds of years older than the stratigraphic layer containing it, yielding an offset between what has been dated and the actual age of the earthquake. The new technique accounts for inbuilt charcoal ages -- which account for the difference in time between the wood's formation and the fire that generated said charcoal -- and can better estimate the age of the event being studied.

"We were able to evaluate the inbuilt age of the charcoal incorporated in the deposits and find that charcoal ages are approximately 322 years older than the actual age of the deposit -- so previous earthquake age models in this area using detrital charcoal would be offset roughly by this amount," she said.

New earthquake age modeling using a method to correct for this charcoal inbuilt age, and age results from the tree stump are what give Streig absolute certainly that the 1838 and 1890 earthquakes in question occurred on the San Andreas Fault and during those years.

"We put the nail in the coffin," she added.

Portland State University

Related Earthquake Articles:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.
How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.
Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.
Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.
New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.
Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.
Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.