Nav: Home

Mice with big brains provide insight into brain regeneration and developmental disorders

May 15, 2012

Scientists at the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa (uOttawa) have discovered that mice that lack a gene called Snf2l have brains that are 35 per cent larger than normal. The research, led by Dr. David Picketts and published in the prestigious journal Developmental Cell, could lead to new approaches to stimulate brain regeneration and may provide important insight into developmental disorders such as autism and Rett syndrome.

Dr. Picketts and his team created the mice to learn more about Snf2l, which is known to play a role in packaging DNA and determining which genes are active versus inactive. They found that the mutant mice were completely normal, except that they had larger brains, more cells in all areas of the brain, and more actively dividing brain stem cells.

"This research represents a fundamental advance in our understanding of how the brain develops, and it also has important practical implications," said Dr. Picketts, Senior Scientist at OHRI and Associate Professor in the Faculty of Medicine at uOttawa. "If we could identify drugs that regulate Snfl2 activity, these could potentially be used to stimulate neural stem cells to help regenerate and repair damage in people who have suffered brain injuries or strokes. We're still at the early stages of this research, but the possibilities are very exciting."

The Snf2l mutant mice are also providing insight into developmental disorders that are associated with changes in brain size. For example, by studying these mice, Dr. Picketts and his team found that Snf2l controls the expression of a gene called Foxg1, which causes the intellectual disability disorder Rett syndrome in some people. While the mutant mice have high levels of Foxg1 and large brains, people with Rett syndrome lack Foxg1 and have small brains. This research shows that Snf2l and Foxg1 work against each other to balance brain size. Autism is also commonly associated with changes in brain size (one third of autistic individuals have a larger brain), however no studies have yet provided a direct link between Snf2l and autism.

"The connections between Snf2l and brain developmental disorders are intriguing," said Dr. Picketts. "We're looking forward to further unravelling these connections and hopefully applying this research to help people who suffer from these conditions."

-end-

This study was funded by the Canadian Institutes of Health Research. The full publication is titled "Snf2l regulates foxg1-dependent progenitor cell expansion in the developing brain", and the authors include: Darren J. Yip, Chelsea P. Corcoran, Matías Alvarez-Saavedra, Adriana DeMaria, Stephen Rennick, Alan J. Mears, Michael A. Rudnicki, Claude Messier and David J. Picketts.

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,500 scientists, clinical investigators, graduate students, postdoctoral fellows and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. Research at OHRI is supported by The Ottawa Hospital Foundation. www.ohri.ca.

Media contact
Jennifer Ganton
Director, Communications and Public Relations, Ottawa Hospital Research Institute
613-798-5555 ext. 73325
613-614-5253 (cell)
jganton@ohri.ca

Ottawa Hospital Research Institute
Genes, ozone, and autism
Exposure to ozone in the environment puts individuals with high levels of genetic variation at an even higher risk for developing autism than would be expected just by adding the two risk factors together, a new analysis shows.
A blood test for autism
An algorithm based on levels of metabolites found in a blood sample can accurately predict whether a child is on the autism spectrum of disorder (ASD), based upon a recent study.
New form of autism found
Autism spectrum disorders (ASD) affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication.
Autism Speaks MSSNG study expands understanding of autism's complex genetics
A new study from Autism Speaks' MSSNG program expands understanding of autism's complex causes and may hold clues for the future development of targeted treatments.
Paths to Autism: One or Many?
A new report in Biological Psychiatry reports that brain alterations in infants at risk for autism may be widespread and affect multiple systems, in contrast to the widely held assumption of impairment specifically in social brain networks.
Raising a child with autism
Humans are resilient, even facing the toughest of life's challenges.
Explaining autism
Recognizing a need to better understand the biology that produces Autism Spectrum Disorder (ASD) symptoms, scientists at Duke-NUS Medical School (Duke-NUS) and the National Neuroscience Institute (NNI), Singapore, have teamed up and identified a novel mechanism that potentially links abnormal brain development to the cause of ASDs.
Autism breakthrough
Using a visual test that is known to prompt different reactions in autistic and normal brains, Harvard researchers have shown that those differences were associated with a breakdown in the signaling pathway used by GABA, one of the brain's chief inhibitory neurotransmitters.
New options for treating autism
The release of oxytocin leads to an increase in the production of anandamide, which causes mice to display a preference for interacting socially.
The Autism Science Foundation launches the Autism Sisters Project
The Autism Science Foundation, a not-for-profit organization dedicated to supporting and funding autism research, today announced the launch of the Autism Sisters Project, a new initiative that will give unaffected sisters of individuals with autism the opportunity to take an active role in accelerating research into the 'Female Protective Effect.'

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.