Coatings for nuclear fuel preventing explosions in reactors, developed at TPU

May 15, 2017

Physicists from Tomsk Polytechnic University are creating protective titanium nitride-based coatings for shells of fuel elements (fuel rods) of nuclear reactors. Such shells can significantly reduce hydrogenation of containers in which nuclear fuel is placed, extend their service life and protect reactor from explosion like at the Fukusima radiation disaster.

"In reactors nuclear fuel is laid in special "tubes" out of zirconium alloys, to form fuel rods. In the fuel rods, a nuclear reaction takes place. As a result of radiolysis of a reactor coolant - water, and also as a result of interaction of the coolant and zirconium under high temperatures hydrogen is released. Hydrogen is able to accumulate in fuel rods shells causing degradation of their mechanical properties and destruction," clarifies one of the developers, an assistant at the Department of General Physics Egor Kashkarov.

According to the young scientist, the danger of interaction of zirconium and water is the higher temperature in the reactor is, the more hydrogen is released. For example, the same happened at the Fukusima-1 station in Japan: due to flooding of pumping equipment the active zone of the reactor warmed up to more than 1,200 °C, a steam-zirconium reaction proceeded swiftly and a large amount of hydrogen was released. The explosion of accumulated hydrogen was one of the biggest radiation accidents in the world.

The scientific team from the TPU Department of General Physics is creating protective titanium nitride-based coatings that will be a barrier protecting zirconium fuel rods from water and hydrogen accumulation.

"During tests titanium nitride has proved itself well: it has high hardness, wear resistance, heat resistance and inertia. We also found that it protects well from hydrogen penetration into the material, what is critical for nuclear energy. The coatings can reduce hydrogen penetration in zirconium alloy," adds Egor Kashkarov.

The coatings on zirconium substrate are applied using two technologies: magnetron sputtering and vacuum arc deposition. The both processes are carried out on a set-up created in the university. The result is a thin film coating - no more than two microns thick.

"One of the applications of the elaborating coatings out of titanium nitride is next generation reactors and thermal nuclear reactors where hydrogen impermeable coating is a pressing issue. In the next generation reactors, temperature is supposed to increase up to 400-450 °C to improve fuel burn-up efficiency. Consequently, hydrogenation of fuel rods will be here much faster. Our coatings are able to prevent it," says the developer.
-end-


Tomsk Polytechnic University

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.