Nav: Home

This fly's incredible hearing is a curiosity to those developing better hearing aids

May 15, 2017

Ormia ochracea's sense of directional hearing is second to none in the animal kingdom.

But, according to new University of Toronto Scarborough research, what makes its hearing so incredible may also complicate efforts in using it as a model for new technology, including hearing aids.

"These flies have highly specialized ears that provide the most acute directional hearing of any animal," says Andrew Mason, a professor of biology at U of T Scarborough. "The mechanism that makes their hearing so exceptional has even led to a range of bio-inspired technology, like the mini directional microphones used in hearing aids."

Ormia is a small, yellow, nocturnal fly native to the southern United States and Mexico. The female uses its exceptional hearing to locate the songs of male crickets, where it deposits its larvae. The larvae then burrow inside the cricket, eating it alive in the process.

While that is pretty extraordinary in itself, what makes the fly truly remarkable is its mechanically-coupled ears. Unlike most animals that have two separate ears, both of Ormia's eardrums are connected together, kind of like a seesaw with a rigid joint in the middle that can bend. When one of eardrums vibrates from a sound wave it pushes the other, and the tiny time difference it takes to activate one ear drum allows the fly to figure out which direction the sound is coming from.

"It's interesting that something so small can be sensitive to the direction of sound," says Mason. "They're tiny relative to the wavelength of sound they're able to localize, so they shouldn't be able to do what they do but they can because of the mechanical coupling."

Engineers are interested in using the same principle found in Ormia's coupled eardrums to develop artificial sensors. These sensors could better locate signals for a range of uses where the size of the object relative to the signal might be a limiting factor - from hearing aids, to gunshot detectors, to different types of radar.

How these are affected by distracting noise is a major obstacle. When it comes to hearing, especially with hearing aids, engineers need to solve something called the "cocktail-party-problem," that is, how to improve signal detection in noisy environments, like tracking one conversation at a crowded party. Animals usually deal with this problem through something called spatial release from masking (SRM) that allows for better signal detection when there's a separation between what they're interested in hearing and any distracting noises.

"If the distracting noise is farther away from the interesting signal, then it causes less interference," explains Mason.

But new research by Mason and his former PhD student Norman Lee, lead author and now an assistant professor of Biology at St. Olaf College in Minnesota, has found that Ormia's mechanically-coupled hearing system prevents it from using SRM.

In a series of lab tests they found that when a distracting noise was introduced to one side of the fly, it diverted it away from the cricket sound it should be interested in. They found that since the fly's hearing is extremely directionally sensitive, and because of its mechanically coupled hearing system, a noise placed at one side obscures the signal in one ear.

"A distracting noise that is more to one side will cause an auditory illusion by obscuring the signal in that ear," says Mason. "It essentially ends up fooling the fly into perceiving that the signal is coming from one place, so it ends up pushing it away from the actual cricket sound."

Mason's research, which was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and will be published in the biology journal eLife, may be of interest to evolutionary biologists since it shows that sources of noise can interfere with the pattern of cricket songs. This in turn affects the fly's ability to find a host to lay its parasite.

Mason says engineers may also be interested because it highlights the possible limitations of mechanically-coupled hearing systems. While Ormia offers a great directional system that offers a fast and accurate response, it's not clear how the flies navigate more complex situations, like multiple signals and noisy environments.

"These flies are very accurate for one thing, which is detecting cricket sounds, but that comes at a cost since they've evolved to focus on this very restrictive set of information," he says.

Somehow, he adds, the flies are able to overcome these apparent limitations in nature. How they're able to do this will be an important area of Mason's future research.

University of Toronto

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...