Nav: Home

Quantum reservoir for microwaves

May 15, 2017

In a recent experiment at EPFL, a microwave resonator, a circuit that supports electric signals oscillating at a resonance frequency, is coupled to the vibrations of a metallic micro-drum. By actively cooling the mechanical motion close to the lowest energy allowed by quantum mechanics, the micro-drum can be turned into a quantum reservoir - an environment that can shape the states of the microwaves. The findings are published as an advanced publication in Nature Physics.

László Dániel Tóth, Nathan Bernier, and Dr Alexey Feofanov led the research effort in Tobias Kippenberg's Laboratory of Photonics and Quantum Measurements at EPFL, with support from Dr Andreas Nunnenkamp, a theorist at the University of Cambridge, UK.

Microwaves are electromagnetic waves, just like visible light, but with a frequency that is four orders of magnitude smaller. Microwaves form the backbone of several everyday technologies, from microwave ovens and cellular phones to satellite communication, and have recently gained further importance in manipulating quantum information in superconducting circuits -- one of the most promising candidates to realize future quantum computers.

The micro-drum, only 30 microns in diameter, 100 nanometers thick and fabricated in the Center of MicroNanotechnology (CMi) at EPFL, constitutes the top plate of a capacitor in a superconducting microwave resonator. The drum's position modulates the resonator's resonance frequency and, conversely, a voltage across the capacitor exerts a force on the micro-drum. Through this bidirectional interaction, energy can be exchanged between mechanical vibrations and the microwave oscillations in the superconducting circuit.

In the experiment, the micro-drum is first cooled close to its lowest energy quantum level by a suitably tuned microwave tone. Every microwave photon (a quantum of light) carries away the energy of a phonon (a quantum of mechanical motion) such that the mechanical energy is reduced. This cooling process increases the dissipation and turns the micro-drum into a dissipative reservoir for the microwave resonator.

By tuning the interactions between the cavity and the cooled micro-drum, which is now an environment for the microwaves, the cavity can be turned into a microwave amplifier. The most interesting aspect of this amplification process is the added noise, that is, how much random, unwanted fluctuations are added to the amplified signal.

Albeit counter-intuitive, quantum mechanics dictates that this added noise cannot be suppressed completely, even in principle. The amplifier realized in the EPFL experiment operates very close to this limit, therefore it is as "quiet" as it can be. Interestingly, in a different regime, the micro-drum turns the microwave resonator into a maser (or microwave laser).

"There has been a lot of research focus on bringing mechanical oscillators into the quantum regime in the past few years." says Dr. Alexey Feofanov, postdoctoral researcher on the project. "However, our experiment is one of the first which actually shows and harnesses their capabilities for future quantum technologies."

Looking ahead, this experiment enables novel phenomena in cavity optomechanical systems like noiseless microwave routing or microwave entanglement. Generally, it proves that mechanical oscillators can be a useful resource in the rapidly growing field of quantum science and engineering.

Future activities on the emerging research possibilities created by this work will be supported by two recently started EC Horizon 2020 projects: Hybrid Optomechanical Technologies (HOT) and Optomechanical Technologies (OMT), both coordinated at EPFL.
-end-
The project was funded by the Swiss National Science Foundation, NCCR QSIT, and the European Union iQUOEMS. L. D. Tóth was supported by the European Union's Marie Curie International Training Network cQOM. A. Nunnenkamp holds a University Research Fellowship from the Royal Society and also acknowledges support from the Winton Programme for the Physics of Sustainability.

Reference

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nature Physics 15 May 2017. DOI: 10.1038/nphys4121

Ecole Polytechnique Fédérale de Lausanne

Related Quantum Mechanics Articles:

Engineers examine chemo-mechanics of heart defect
Elastin and collagen serve as the body's building blocks. Any genetic mutation short-circuiting their function can have a devastating, and often lethal, health impact.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Quantum mechanics are complex enough, for now...
Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Problems in mechanics open the door to the orderly world of chaos
Despite the impression given in most mechanics texts, most non-trivial mechanics problems simply have no analytic solutions.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Quantum satellite device tests technology for global quantum network
Researchers at the National University of Singapore and University of Strathclyde, UK, report first data from a satellite that is testing technology for a global quantum network.
Understanding the mechanics of the urinary bladder
Dr. S. Roccabianca and Dr. T.R. Bush, researchers from Michigan State University compiled an extensive review of the key contributions to understanding the mechanics of the bladder ranging from work conducted in the 1970s through the present time with a focus on material testing and theoretical modeling.
Mechanics of a heartbeat are controlled by molecular strut in heart muscle cells
Using high-resolution microscopy, researchers found that molecular struts called microtubules interact with the heart's contractile machinery to provide mechanical resistance for the beating of the heart, which could provide a better understanding of how microtubules affect the mechanics of the beating heart, and what happens when this goes awry.
Quantum computing closer as RMIT drives towards first quantum data bus
Researchers have trialled a quantum processor capable of routing quantum information from different locations in a critical breakthrough for quantum computing.

Related Quantum Mechanics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...