Nav: Home

UNH researcher identifies key differences in solar wind models

May 15, 2017

DURHAM, N.H. - The challenge of predicting space weather, which can cause issues with telecommunications and other satellite operations on Earth, requires a detailed understanding of the solar wind (a stream of charged particles released from the sun) and sophisticated computer simulations. Research done at the University of New Hampshire has found that when choosing the right model to describe the solar wind, using the one that takes longer to calculate does not make it the most accurate.

In the study, published in The Astrophysical Journal, Daniel Verscharen, a research assistant professor in physics at UNH's Space Science Center, compared two commonly used theoretical descriptions, kinetic theory versus magnetohydrodynamics (MHD), when measuring the behavior of turbulence in the solar wind. Kinetic theory looks at the solar wind as a composition of rapidly moving particles and uses very complicated mathematical methods that require long periods of time when evaluated on sophisticated super computers. The second description, MHD, views the solar wind as being a fluid, or more gas-like, and is much less complicated to calculate. Surprisingly, the study showed that it was the MHD, the model that was faster to calculate, that delivered the more precise predictions.

"Our research found that it makes a huge difference which model is used," said Verscharen. "We found that the much faster computed MHD models may actually capture some of the solar-wind behavior a lot better than expected. This is a very important result for solar-wind modelers because it may justify the application of MHD, based on first principles and observations."

To prove his theory, Verscharen collected data taken from the WIND spacecraft, which is currently orbiting in the solar wind, from study co-authors Christopher Chen at the Imperial College London and Robert Wicks from University College London. After comparing the theory with the actual spacecraft data, the team found that the type of disturbance they were investigating behaved a lot more like a fluid than a kinetic medium with collisionless particles. This was unexpected because they believed that the kinetic theory should work much better in a gas as dilute, or thin, as the solar wind.

The finding could lead to a more efficient way to forecast space weather for institutions that need to continually model the solar wind, like NASA. Severe space weather can cause satellite and communication failures, GPS loss, power outages, and can even have effects on commercial airlines and space flight. In order to forecast the effects that solar wind plasma and energetic particles might have on these systems, modelers currently run different computer simulations and compare the results. Verscharen and his team believe that their findings could help develop a set of criteria to determine which type of modeling would be most appropriate for their prediction efforts in specific situations.

"If the solar-wind parameters were a certain way, they could use MHD modeling and if not, they might be better to perform simulations based on kinetic theory," said Verscharen. "It would just provide a more efficient way to predict space weather and the solar wind."

It is still not understood why the solar wind behaves like a fluid. The researchers hope future studies will determine under which conditions the solar wind can be modeled as a fluid with MHD, and when a kinetic model would be necessary.
This research was supported by NASA, a National Science Foundation SHINE grant, and the United Kingdom Science and Technology Facilities Council.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

Caption: Researchers used data from NASA's WIND spacecraft project to identify differences in solar wind models.
Photo Credit: NASA

University of New Hampshire

Related Solar Wind Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
UNH researcher identifies key differences in solar wind models
The challenge of predicting space weather, which can cause issues with telecommunications and other satellite operations on Earth, requires a detailed understanding of the solar wind (a stream of charged particles released from the sun) and sophisticated computer simulations.
NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
Wind and solar energy projects could bring 5,000 new jobs to rural Minnesota
While Minnesota's state energy policies have been a large driver in the shift from fossil fuels to renewables, the federal Production Tax Credit and Investment Tax Credit have played a major role in shaping the state's clean energy economy while keeping rates affordable for utility customers, according to a new report from the University of Minnesota Energy Transition Lab.
A better battery: One-time pollutant may become valued product to aid wind, solar energy
Chemists have discovered that one or more organic compounds in a family that traditionally has been known as pollutants could offer an important advance to make cheap, reliable batteries.
UNH researchers discover effect of rare solar wind on Earth's radiation belts
Researchers from the University of New Hampshire have captured unique measurements of the Van Allen radiation belts, which circle the Earth, during an extremely rare solar wind event.
NREL supercomputing model provides insights from higher wind and solar generation in the eastern power grid
A new study from the United States Department of Energy's National Renewable Energy Laboratory used high-performance computing capabilities and innovative visualization tools to model, in unprecedented detail, how the power grid of the eastern United States could operationally accommodate higher levels of wind and solar photovoltaic generation.
Food waste could store solar and wind energy
Saving up excess solar and wind energy for times when the sun is down or the air is still requires a storage device.

Related Solar Wind Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".