Nav: Home

Varied increases in extreme rainfall with global warming

May 15, 2017

A new study by researchers from MIT and the Swiss Federal Institute of Technology in Zurich shows that the most extreme rain events in most regions of the world will increase in intensity by 3 to 15 percent, depending on region, for every degree Celsius that the planet warms.

If global average temperatures rise by 4 degrees Celsius over the next hundred years, as many climate models predict given relatively high CO2 emissions, much of North America and Europe would experience increases in the intensity of extreme rainfall of roughly 25 percent. Some places such as parts of the Asian monsoon region would experience greater increases, while there will be smaller increases in the Mediterranean, South Africa and Australia.

There are a few regions that are projected to experience a decrease in extreme rainfall as the world warms, mostly located over subtropical oceans that lie just outside the tropical, equatorial belt.

The study, published today in Nature Climate Change, finds that the varied changes in extreme precipitation from region to region can be explained by different changes in the strength of local wind patterns: As a region warms due to human-induced emissions of carbon dioxide, winds loft that warm, moisture-laden air up through the atmosphere, where it condenses and rains back down to the surface. But changes in strength of the local winds also influence the intensity of a region's most extreme rainstorms.

Paul O'Gorman, a co-author on the paper and associate professor of atmospheric science in MIT's Department of Earth, Atmospheric and Planetary Sciences, says being able to predict the severity of the strongest rain events, on a region-by-region basis, could help local planners prepare for potentially more devastating storms.

"There is interest around the world in the question of whether to adjust codes to adapt to a changing climate and precipitation, particularly for flooding," O'Gorman says. "We found there are regional variations in the projected precipitation response because of changes in winds, and of course if you're interested in the impacts of precipitation extremes, you'd want to know what's happening in your region."

A global grid view

Since the 1990s, scientists have predicted based on climate models that the intensity of extreme rain events around the world should increase with rising global temperatures. Current observations have so far verified this trend on a broad, global scale. But knowing how extreme storms will change on a more specific, regional scale has been a trickier picture to resolve, as climate data is not equally available in all countries, or even continents, and the signal of climate change is masked by weather noise to a greater extent on the regional scale.

"The observations are telling us there will be increases [in extreme rainfall] at almost all latitudes, but if you want to know what's going to happen at the scale of a continent or smaller, it's a much more difficult question," O'Gorman says.

He and his colleagues began their study by taking a global perspective. They first looked through a massive archive of global simulation runs, known as the Coupled Model Intercomparison Project Phase 5 (CMIP5), which aggregates outputs, or predictions, made by different climate models, for everything from local air pressure to the thickness of sea ice in response to changing climate.

For this study, the researchers culled the CMIP5 archive for specific outputs, including daily accumulated surface precipitation and temperature, vertical wind velocity and pressure, and daily atmospheric humidity. These outputs were simulated by 22 climate models, for the years 1950 to 2100, under a scenario in which there are relatively high emissions of CO2.

The team looked at each of the 22 models' outputs on a regional, grid-by-grid basis. Each model simulates climate conditions by dividing the globe up into a grid, with each grid cell's side measuring 100 to 200 kilometers. For each cell in each model, the researchers identified the maximum daily rainfall per year and compared this to the average global temperature for that year.

All 22 models predicted that the highest increases in extreme rainfall will occur over parts of the Asian monsoon region such as India and over parts of the equatorial Pacific, with more moderate increases in North America, Central America, the Mediterranean, and Australia.

O'Gorman says that while the spatial pattern of change was robust across the models, the magnitude of the change was much more uncertain in tropical regions, and higher-resolution modeling is needed to narrow down this uncertainty.

To see what was influencing the region-to-region variability in rainfall increases, the team plugged the outputs into a physics-based formula that relates the amount of surface precipitation to the vertical winds and the amount of water vapor in the atmosphere. They found that, overall, it was the changes in winds, and not water vapor, that determined the region-to-region variations in the change in extreme rain intensity.

Tropical expansion

The researchers also found decreases in extreme rainfall amounts over subtropical ocean regions, where the overlying atmosphere is generally dry, producing relatively weak storm systems.

"It's kind of striking," O'Gorman says. "Almost everywhere, there's an increase in precipitation extremes, except for these ocean regions."

He suggests this may be partly due to the ongoing expansion of the tropics, and the associated changes to a atmospheric circulation system known as the Hadley cell, in which air rises near the equator and descends farther poleward. As the climate has warmed in past decades, researchers have noted that the climate at the equator has spread towards the poles, creating a much wider tropical belt. As the tropics and the Hadley cell continue to expand, this would affect the pattern of extreme precipitation, especially in the subtropics.

"The subtropics are generally dry, and if you move the region of descending air poleward, you would get some regions with increases, and others with decreases [in extreme rainfall]," O'Gorman says. "However we found that this only explained half of the decreases from changes in winds, so it's still something of a mystery as to why you get a decrease in precipitation extremes there."

O'Gorman is currently investigating whether the duration of extreme rainfall events changes with increasing temperatures, which could have practical implications for determining the resilience of buildings and infrastructure.

"Given an extreme precipitation event, how long does it last, say in hours, and does that time change with climate warming?" O'Gorman says. "We think the intensity of an event changes, and if the duration also changes, that could be significant too."
-end-
This research was supported, in part, by the National Science Foundation.

Additional background

ARCHIVE: Study finds more extreme storms ahead for California
http://news.mit.edu/2017/more-extreme-storms-ahead-california-0103

ARCHIVE: Paul O'Gorman: Extreme storm modeler
http://news.mit.edu/2015/faculty-profile-paul-ogorman-0825

ARCHIVE: Snowfall in a warmer world
http://news.mit.edu/2014/global-warming-snowstorms-0827

ARCHIVE: When it rains, it pours
http://news.mit.edu/2012/study-shows-intensified-tropical-rainfall-with-global-warming-0917

Massachusetts Institute of Technology

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...