Nav: Home

Tumor-trained T cells go on patrol

May 15, 2017

'Tumour-trained' immune cells - which have the potential to kill cancer cells - have been seen moving from one tumour to another for the first time. The new findings, which were uncovered by scientists at Australia's Garvan Institute of Medical Research, shed light on how immune therapies for cancer might work, and suggest new approaches to developing anti-cancer immune therapies.

The study, which was carried out in mice, is published today in the Proceedings of the National Academy of Sciences USA (PNAS).

Metastatic cancer, in which cancer has spread to other sites beyond the primary tumour, is responsible for almost all cancer deaths, and treatment options remain very limited. New immune therapies that help the body's own immune T cells to attack cancer cells within tumours are showing promise in metastatic cancer -- yet little is understood about how these therapies function.

"We know that T cells and other immune cells accumulate inside tumours -- but until now we've known very little about what happens next. How does the environment within the tumour change the cells? Do they leave the tumour? Which types of immune cells leave? Where do they go, and why?" says Dr Tatyana Chtanova, head of the Innate and Tumour Immunology lab in Garvan's Immunology Division, who led the research.

To watch 'tumour-trained' immune cells travelling through the body, Dr Chtanova and her team used an innovative 'photoconversion' strategy -- in which all the cells in a mouse are labelled with a green fluorescent compound, and only those within a tumour (including immune cells) are turned to red by shining a bright light on the tumour.

"Before, we could only guess at which immune cells were leaving tumours," says Dr Chtanova, "so to see these red cells moving in a sea of green, as they exited a tumour and travelled through the body, was remarkable.

"We saw immune cells leaving the tumour and moving into lymph nodes - and, importantly, we could see immune cells moving out of one tumour and into another, distant tumour."

The researchers were surprised to see that the mix of immune cells leaving tumours was sharply different to the mix of immune cells going in.

"We found, unexpectedly, that T cells were the main immune cells to exit tumours and move to lymph nodes and other tumours - even though they represent only a fraction of the immune cells that enter tumours," Dr Chtanova notes, "and some classes of T cell, such as CD8+ effector T cells which promote tumour destruction, were more likely to exit the tumour.

"This tells us that there's strong control over the tumour-exiting process."

Importantly, the T cells that had been exposed to the tumour's 'microenvironment' and then exited the tumour were more activated, and had a stronger cytotoxic (cell-killing) activity, than those that did not enter the tumour.

"What we suspect is happening is that, within the tumour, these T cells are acquiring knowledge about the cancer that helps them to seek and destroy tumour cells.

"It's possible that these T cells 'on patrol' -- which leave one tumour and move to another -- are using their new-found knowledge to attack cancerous cells in the second tumour."

The research team are now working on ways to prompt activated T cells to exit tumours in greater numbers.

"Ultimately, we're working to understand more deeply the relationships between immune and cancer cells, so that we can design approaches to empower the immune system to destroy cancer," Dr Chtanova adds.
-end-
Media enquiries: Meredith Ross (Garvan) - m.ross@garvan.org.au - 0439 873258

Garvan Institute of Medical Research

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".