Nav: Home

Joint resolution: A link between Huntington's disease and rheumatoid arthritis

May 15, 2018

Using new analytic tools, researchers at University of California San Diego School of Medicine and the Icahn School of Medicine at Mount Sinai have decoded the epigenetic landscape for rheumatoid arthritis (RA), a common autoimmune disease that affects more than 1.3 million Americans. In unveiling RA's epigenome -- the proteins and molecules that decorate DNA and help turn genes on and off -- scientists made a surprising discovery: an overlap between the causes of RA and Huntington's disease, a fatal and incurable genetic brain disease.

The findings are published online in the May 15 issue of Nature Communications.

The research team, led by senior author Gary S. Firestein, MD, dean and associate vice chancellor of translational medicine at UC San Diego School of Medicine, said the unexpected connection between RA and Huntington's disease opens up the possibility of new therapeutic targets and drugs for both conditions.

"We did not expect to find an overlap between rheumatoid arthritis and Huntington's disease, but discovering the unexpected was the reason that we developed this technology. Now that we have uncovered this connection, we hope that it opens a door for treatment options for people living with either disease," said Firestein.

RA is a chronic inflammatory disorder that causes pain and swelling in joints. As an autoimmune disease, it can also affect other organs, including heart and blood vessels. Treatment for RA has improved, but 10 to 20 percent of patients do not respond to any available medicines.

The investigative approach used by the research team involved developing a novel algorithm, or set of computational rules, called EpiSig, which integrated and reduced the number of epigenetic combinations in the genes of patients with RA. The team could then identify new cell signaling pathways.

"Comparing different types of epigenomic data is difficult because it involves a variety of different data subsets that cannot normally be analyzed together, including various methods in which DNA gets modified," said Wei Wang, PhD, professor of chemistry, biochemistry and cellular and molecular medicine at UC San Diego School of Medicine.

"This methodology can also be used to find connections between other diseases, not just rheumatoid arthritis," added Firestein. "As genes involved are discovered, researchers can potentially identify new treatment options and even repurpose existing drugs."

Firestein and team studied the epigenome in cells from the joints of patients with RA. Patients with osteoarthritis, which is a disease of cartilage degeneration, served as a control group. Both data sets were analyzed through an expansive process that examines chromatin, DNA and histone modifications. The results produced 12 terabytes of data (12 trillion bytes) that were then analyzed using EpiSig.

Epigenetics, or "above the genome", is the study of processes that alter the gene structure without changing the DNA sequence itself. These DNA modifications are essential to human growth and development and change throughout people's lives. Epigenetic changes are influenced by a variety of environmental factors, including stress, activity and lifestyle choices.

"By revealing the comprehensive epigenetics behind rheumatoid arthritis, we now have a better understanding of this disease. More importantly, our new approach, could not only help patients with rheumatoid arthritis, but also people with other immune-mediated diseases," Firestein said.
-end-
Co-authors include: Rizi Ai, Deepa Hammaker, David L. Boyle, Andre Wildberg, Keisuke Maeshima, Richard I. Ainsworth, Mengchi Wang, and Bo Ding, UC San Diego; Teresina Laragione and Percio S. Gulko, Icahn School of Medicine at Mount Sinai; Emanuele Palescandolo, Vinod Krishna, David Pocalyko, John W. Whitaker, Yuchen Bai, Sunil Nagpal, and Kurtis E. Bachamn Janssen Pharmaceuticals.

University of California - San Diego

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...