Nav: Home

Analysis of causality principle for the conductivity of graphene

May 15, 2018

Vladimir Mostepanenko, Chief Research Associate of KFU Cosmology Lab and Pulkovo Astronomical Observatory, explains, "Despite graphene layers' extremely small width, it has proven to be a firm material which conducts electricity even under zero temperatures when density of charge carriers also equals zero. But something absolutely unexpected was that this residual conductivity can be expressed through fundamental physical constants - electron charge and Planck constant. Graphene has been used successfully in dozens of electronic devices and has been found in interstellar matter."

Graphene's unusual qualities led to speculation that the causality principle may not be observed for it. The authors, Vladimir Mostepanenko and Galina Klimchitskaya, proved that the principle is preserved for graphene. Through the direct analytic calculation it was shown that the real and imaginary parts of graphene conductivity, found recently on the basis of first principles of thermal quantum field theory using the polarization tensor in (2+1)-dimensional space-time, satisfy the Kramers-Kronig relations precisely.

The results are important for further inquiries into reflective and absorptive qualities of graphene.
-end-


Kazan Federal University

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Graphene: The Superstrong, Superthin, and Superversatile Material That Will Revolutionize the World
by Les Johnson (Author), Joseph E. Meany (Author)

Carbon Nanotube and Graphene Device Physics
by H.-S. Philip Wong (Author), Deji Akinwande (Author)

The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry (Sterling Milestones)
by Derek B Lowe (Author)

Graphene: Fundamentals, Devices, and Applications
by Serhii Shafraniuk (Author)

Graphene: An Introduction to the Fundamentals and Industrial Applications (Advanced Material Series)
by Madhuri Sharon (Editor), Maheshwar Sharon (Editor), Ashutosh Tiwari (Editor), Hisanori Shinohara (Editor)

Graphene: A New Paradigm in Condensed Matter and Device Physics
by E. L. Wolf (Author)

The Graphene Handbook (2018 edition)
by Ron Mertens (Author)

Preparation of Graphene Oxide from Tattered Graphite and Applications
by Pramod Kumar (Author), RACHANA Kumar (Author)

Graphene Photonics
by Cambridge University Press

Graphene: Fundamentals and emergent applications
by Jamie H. Warner (Author), Franziska Schaffel (Author), Mark Rummeli (Author), Alicja Bachmatiuk (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.