Nav: Home

Malaria detectable in olfactory cocktail

May 15, 2018

Malaria is still a deadly disease in tropical and subtropical regions. Every year the disease infects more than 200 million people worldwide, claiming several hundred thousand victims. Children are particularly vulnerable, with 90 percent of the victims under the age of five, according to the World Health Organization (WHO). Not only can malaria kill people, but it also impairs survivors' quality of life and is a significant hindrance to economic development in the countries where it is prevalent.

In many cases, however, the infected host carries the pathogen without presenting any external symptoms. "These are precisely the people we need to target in order to stop the disease spreading," says Consuelo De Moraes, Professor of Biocommunication & Entomology at ETH Zurich.

Recognizing changes in odours

But how do you identify infected people with no external symptoms? Possibly by recognizing changes their odours - as demonstrated by the ETH professor and her colleagues in a paper just published in the journal Proceedings of the National Academy of Sciences. Working with collaborators at the International Centre for Insect Physiology and Ecology in Nairobi, these researchers examined volatile chemicals released from the skin of Kenyan children and identified characteristic patterns for both acute and asymptomatic malaria infections.

In a previous study with mice, these researchers had demonstrated that changes in odours associated with malaria make infected individuals more attractive to mosquito vectors, which transmit the disease from one individual to another. "Based on our previous work we had reason to hope that similar changes in human odours might provide biomarkers that could be used for diagnosis," De Moraes explains.

To pursue their theory, the ETH scientists collected samples of volatile substances released from the skin of more than 400 Kenyan school children. This experiment involved placing a child's foot or arm into sealed Teflon bag and passing an air current over the skin for about one hour. The air was then channelled through special filters that collected the volatile compounds. Using gas chromatography and mass spectrometry, the scientists then determined the identity and quantity of each compound to generate odour profiles for infected and healthy children.

Important differences

Further analysis of these profiles identified volatile biomarkers that enabled the researchers to clearly identify whether a child is infected with the malaria parasite. In addition, the odour profiles were found to be significantly different in the case of acute and asymptomatic infections. The researchers were able to detect the pathogen extremely reliably even when it was only present in minute quantities and was not yet observable under the microscope. Even for asymptomatic infections, the detection rate in the study was close to one hundred percent.

"This high detection rate was encouraging," says De Moraes, who was also surprised by the considerable differences found in the profiles of individuals with acute and asymptomatic malaria infections. "Initially we weren't sure which chemical compounds we should be looking for," explains the ETH professor. The body releases many different compounds from the skin that vary according to food intake, metabolism or illness. "The specific signature is not created by the presence or absence of specific compounds, but through a change in the concentrations of compounds that are also present in healthy people. Our task was to filter out the right signals from the extensive background noise."

The researchers hope that the biomarkers they have identified may be suitable for developing a relatively simple diagnostic tool that can be used in the field for the early detection of malaria. Methods such as Polymerase Chain Reaction (PCR), a DNA analysis technique, already exist for identifying malaria pathogens at an early stage. However, they are relatively expensive and require laboratory facilities, which makes their widespread use challenging, particularly in the poorer countries of the southern hemisphere.

First step towards application

"These new volatile biomarkers are an important first step. Now someone needs to develop an application that can be used cheaply and reliably in the field," says Mark Mescher, an ETH Professor in the Institute of Integrative Biology who also worked on the project. The researchers hope to contribute to the development of such an application through continued partnership with the Bill and Melinda Gates Foundation, which provided some of the funding for this research.

These ETH researchers also hope that similar methods might be effective in combatting other diseases. "We know that vector-borne pathogens often cause changes in the odours of infected individuals that influence vector behaviour," says Mescher, "which may create a chemical signature of infection that can be harnessed for diagnosis."
-end-
Reference

De Moraes CM, Wanjiku C, Stanczyk NM, Pulido H, Sims JW, Betz HS, Read AF, Torto B, Mescher MC. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proceedings of the National Academy of Sciences, published online, 14th May 2018. doi:10.1073/pnas.1801512115

ETH Zurich

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
Why malaria mosquitoes like people with malaria
Malaria mosquitoes prefer to feed -- and feed more -- on blood from people infected with malaria.
Malaria superbugs threaten global malaria control
A lineage of multidrug resistant P. falciparum malaria superbugs has widely spread and is now established in parts of Thailand, Laos and Cambodia, causing high treatment failure rates for the main falciparum malaria medicines, artemisinin combination therapies (ACTs), according to a study published today in The Lancet Infectious Diseases.
Considering cattle could help eliminate malaria in India
The goal of eliminating malaria in countries like India could be more achievable if mosquito-control efforts take into account the relationship between mosquitoes and cattle, according to an international team of researchers.
Seasonal malaria chemoprevention in Senegalese children lowers overall malaria burden
Giving preventive antimalarial drugs to children up to age 10 during active malaria season reduced the cases of malaria in that age group and lowered the malaria incidence in adults, according to a randomized trial carried out in Senegal and published in PLOS Medicine by researchers from the Université Cheikh Anta Diop, Senegal, the London School of Hygiene & Tropical Medicine, UK, and other collaborators.
How malaria fools our immune system
OIST researchers reconstruct the 3-D structure of a malaria protein in combination with human antibodies.

Related Malaria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...