Nav: Home

How the waterwheel plant snaps

May 15, 2018

The midrib of the leaf (which has been transformed into a snap trap) bends slightly downwards in a flash, the trap halves fold in, and the water flea can no longer escape - as part of an interdisciplinary team Anna Westermeier, Dr. Simon Poppinga and Prof. Dr. Thomas Speck from the Plant Biomechanics Group at the Botanic Garden of the University of Freiburg have discovered how this snapping mechanism, with which the carnivorous waterwheel (Aldrovanda vesiculosa) catches its prey, works in detail. The study was carried out in the Collaborative Research Centre "Biological Design and Integrative Structures: Analysis, Simulation and Implementation in Architecture". In addition to the Freiburg biologists, experts from the Institute of Structural Analysis and Structural Dynamics (IBB) at the University of Stuttgart and from the Institute of Botany at the Czech Academy of Sciences were also involved. The team has published its results in the journal Proceedings of the Royal Society B: Biological Sciences.

The Venus flytrap (Dionaea muscipula) and the far less known aquatic waterwheel are the only carnivorous plants with snap traps. While intensive research on the Venus flytrap has been going on for a long time, the ten times faster underwater snap traps of the waterwheel have so far been little studied. The team led by the Freiburg biologists has now deciphered the underlying movement principle using experiments and computer simulations. The researchers found that the waterwheel snaps shut its trap, which is only three millimetres in size, by actively changing the internal pressure in the cells of the leaf, which leads to the midrib bending, and also by releasing internal prestress, which apparently results in an acceleration effect. The Venus flytrap, on the other hand, employs a hydraulic mechanism to change the curvature of its leaf halves which results in rapid trap closure. Although both plants share many similarities, the mechanics of the traps differ considerably. This finding may not only help understanding the development of snap traps from an evolutionary perspective, but also the adaptation to different habitats - in a terrestrial habitat with the Venus flytrap, under water with the waterwheel.

The team also published a biomimetic implementation of the waterwheel trap movement principle as part of the Collaborative Research Centre at the beginning of 2018 - together with other colleagues from the IBB and the Institute for Load-bearing Structures and Structural Design (ITKE) at the University of Stuttgart and the German Institutes for Textile and Fibre Research (DITF). The facade shading Flectofold© shows the same opening and closing movement as its biological inspiration, the waterwheel, and can also be attached to complex building shells.
Original publications
  • Westermeier, A. S./Sachse, R./Poppinga, S./Vögele, P./Adamec, L./ Speck, T./Bischoff, M. (2018): How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. In: Proceedings of the Royal Society B: Biological Sciences 285: 20180012. doi: 10.1098/rspb.2018.0012
  • Körner, A./Born, L./Mader, A./Sachse, R./Saffarian, S./Westermeier, A. S./Poppinga, S./Bischoff, M./Gresser, G. T./Milwich, M./Speck, T./Knippers, J. (2018): Flectofold - a biomimetic compliant shading device for complex free form facades. In: Smart Materials and Structures 27/1. doi: 10.1088/1361-665X/aa9c2f
Article in Online magazine of the University of Freiburg about the biomimetic facade shading system Flectofold©

Contact: Plant Biomechanics Group
Albert-Ludwigs-Universität Freiburg

University of Freiburg

Related Computer Simulations Articles:

A unique data center for cosmological simulations
Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universit├Ąt Munich have established 'Cosmowebportal', a unique data center for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences.
Advancing cancer immunotherapy with computer simulations and data analysis
Immunotherapy supercharges the body's own disease-fighting mechanisms to combat cancer.
Computer simulations first step toward designing more efficient amine chemical scrubbers
A proof-of-concept molecular modeling study from North Carolina State University that analyzes the efficiency of amine solutions in capturing carbon dioxide is the first step toward the design of cheaper, more efficient amine chemicals for capturing carbon dioxide -- and reducing harmful CO2 emissions -- in industrial installations.
Supercomputer simulations help develop new approach to fight antibiotic resistance
Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory have played a key role in discovering a new class of drug candidates that hold promise to combat antibiotic resistance.
Simulations show how to turn graphene's defects into assets
Researchers at Penn State, the Department of Energy's Oak Ridge National Laboratory and Lockheed Martin Space Systems Company have developed methods to control defects in two-dimensional materials, such as graphene, that may lead to improved membranes for water desalination, energy storage, sensing or advanced protective coatings.
Computer simulations explore how Alzheimer's disease starts
Rice University researchers build simulations of amyloid beta proteins to see what their energy landscapes reveal about the formation of plaques in patients with Alzheimer's disease.
New simulations of wind power generation
ETH researcher Stefan Pfenninger and his colleague Iain Staffell from Imperial College London have developed new multi-decade simulations of wind power production in Europe.
Coral conservation efforts aided by computer simulations
Contrary to a prevailing theory, coral larvae could not survive the five-thousand-kilometer trip across the Pacific Ocean to replenish endangered corals in the eastern Pacific, according to new research.
User-friendly language for programming efficient simulations
A team of researchers from MIT's Computer Science and Artificial Intelligence Laboratory, Adobe, the University of California at Berkeley, the University of Toronto, Texas A&M, and the University of Texas have developed a new programming language that handles that switching automatically.
Computer scientists find way to make all that glitters more realistic in computer graphics
Iron Man's suit. Captain America's shield. The Batmobile. These all could look a lot more realistic thanks to a new algorithm developed by a team of US computer graphics experts.

Related Computer Simulations Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...