Nav: Home

Scientists develop method to tweak tiny 'antenna' on cells

May 15, 2018

Scientists at Johns Hopkins Medicine and the National Tsing Hua University in Taiwan say they have found a fast way to manipulate a cell's cilia, the tiny, fingerlike protrusions that "feel" and sense their microscopic environment. The experiments, performed in mouse cells, may advance scientists' efforts to not only understand how the nanosized antennae work, but also how to repair them.

A report of their findings appeared online April 30 in Nature Communications.

With few exceptions, most cells in the body have cilia or can grow them. The tiny antenna sense chemicals such as hormones and growth factors, which regulate cell health and growth. Cilia also detect mechanical and physical cues in the body, such as light, gravity, sound and the flow of blood and urine.

When cilia malfunction, a range of human diseases and conditions can occur. For example, problems with cilia in kidney cells can cause polycystic kidney disease, an incurable condition in which fluid-filled cysts interfere with kidney function and which is conventionally treated with dialysis.

Because cilia are so small -- 10,000 times smaller than a cell -- scientists have long found it challenging to squeeze their tools into such tight spaces to study them.

"When I was a postdoc, a colleague in a neighboring laboratory was studying cilia, and I hoped that by combining his knowledge of the biology of cilia with my expertise in cellular engineering, we could figure out how to manipulate cilia within their tiny spaces," says Takanari Inoue, Ph.D., professor of cell biology at the Johns Hopkins University School of Medicine and an author of the new report.

After years of work, he says they figured out a way to manipulate a chemical signaling pathway within cilia that controls how molecules are shuttled up and down the length of the tiny structure.

To do it, Inoue and his colleagues in Taiwan used a tool called chemically inducible dimerization, which they say is faster than efforts to manipulate the pathway by rewriting the cilia's genetic code. The tool, essentially, is a matchmaker -- it helps to mesh two specific chemicals together at specific sites within a living cell.

For the new study, Inoue and his colleagues added a protein called FRB to cells from mice grown in the laboratory. The FRB protein is capable of glomming onto a rigid structure within cilia, called a microtubule, which acts as a railway, shuttling proteins up and down the length of cilia.

Then they added a molecule called FKBP to the cells, which is attached to an enzyme that acts as an eraser for a chemical modification in the cilia called glutamylation. The FKBP and enzyme pair floats around the cell until scientists add a chemical called rapamycin, which causes FKBP to get trapped at FRB molecules within the cilia.

Once inside the cilia, the enzyme attached to the FKBP molecule selectively erases the glutamylation modification inside the cilia. It also ignores other signaling pathways.

The scientists call their molecule matchmaking STRIP, for spatiotemporal rewriting intraciliary post-translational modifications.

As a result of rapidly removing glutamylation in cilia, the scientists found that molecules flowed up the cilia, toward the tip, more slowly -- about .3 micrometers per second -- compared with .4 micrometers per second, using a dead enzyme that doesn't affect glutamylation.

"We think our technique is faster than existing means of tracking cilia activity and enables scientists to access cilia parts faster and dive into specific chemical modifications for certain amounts of time," says Inoue.

"Our STRIP system offers a new strategy for precisely controlling microtubule modifications in living cells. With this approach, it becomes possible to understand how microtubules regulate cellular functions and may also serve as a new way to treat human diseases in the future," says Yu-Chun Lin, Ph.D., an assistant professor at the Institute of Molecular Medicine at the National Tsing Hua University in Taiwan.

Other diseases affected by flawed cilia include a brain disorder called Joubert syndrome, a kidney disorder called nephronophthisis, retinitis pigmentosa and a rare disorder called situs inversus, in which the internal organs of the body are in the reverse location of their normal position.

The scientists also found that microtubules in the mouse cells that are not located inside cilia were not affected when they tinkered with glutamylation.

Inoue and his colleagues also found that the genetic output of a developmental pathway called Hedgehog (which is connected to glutamylation) is decreased in cells treated with STRIP compared with their controls.

Inoue and his colleagues say they now plan to apply STRIP to human cells and look more closely at the molecular process of glutamylation in cilia. They may also use STRIP to control other chemical modifications within cilia.
-end-
Co-authors include Cuei-Ling Wang, Shi-Rong Hong, Yao-Shen Huang, Yu-Chen Chang, Ya-Chu Chang, Chun-Yu Lin, Ning Hsu, Hsiao-Chi Cheng, Yueh-Chen Chiang, Wei-En Huang and Yu-Chun Lin from National Tsing Hua University, Taiwan; Ganesh V. Pusapati and Rajat Rohatgi from Stanford University and Nathan C. Shaner from the Scintillon Institute.

Funding for the study was provided by the National Institutes of Health (GM105448, GM118082, R01DK102910), the Ministry of Science and Technology, Taiwan, Program for Translational Innovation of Biopharmaceutical Development-Technology Supporting Platform Axis-nMACS Imaging and the National Tsing Hua University.

Johns Hopkins Medicine

Related Enzyme Articles:

Enzyme may represent new target for treating asthma
An enzyme called diacylglycerol kinase zeta (DGKζ) appears to play an important role in suppressing runaway inflammation in asthma and may represent a novel therapeutic target.
Enzyme may indicate predisposition to cardiovascular disease
Study suggests that people with low levels of PDIA1 in blood plasma may be at high risk of thrombosis; this group also investigated PDIA1's specific interactions in cancer.
BridgIT, a new tool for orphan and novel enzyme reactions
Chemical engineers at EPFL have developed an online tool that can accurately assign genes and proteins to unknown 'orphan' reactions, which are a major headache for biotechnology, drug development, and even medicine.
How a mitochondrial enzyme can trigger cell death
Cytochrome c is a small enzyme that plays an important role in the production of energy by mitochondria.
Novel enzyme discovered in intestinal bacteria
At the University of Konstanz, in cooperation with Harvard University, a key enzyme for formation of harmful hydrogen sulphide in the human gut by Bilophila bacteria has been discovered.
Chemists discover unexpected enzyme structure
MIT chemists have discovered a unique aspect of the structure of carbon monoxide dehydrogenase, a bacterial enzyme that can convert carbon dioxide to carbon monoxide.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
Enzyme discovery could help in fight against TB
Research by a team led by Dr. Elizabeth Fullam has revealed new findings about an enzyme found in Mycobacterium tuberculosis (Mtb), the bacterium that causes TB.
Researchers discover new enzyme paradigm for critical reaction researchers discover new enzyme paradigm for critical reaction in converting lignin to useful produce useful products
An international research team, including scientists from the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), has discovered and characterized a new family of cytochrome P450 enzymes that is critical to improving the conversion of lignin--one of the main components of plants--into valuable products such as nylon, plastics, and chemicals.
Novel genetic method improves efficiency of enzyme
Researchers at the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to break down biomass.
More Enzyme News and Enzyme Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.