Nav: Home

Explanation for puzzling quantum oscillations has been found

May 15, 2018

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a quantum simulator. Their experiments in this system, presented in July 2017 at a conference in Trieste, revealed completely unexpected periodic oscillations in the dynamics of the interacting atoms. Now, an international team of researchers, including Alexios Michailidis and Maksym Serbyn from the Institute of Science and Technology Austria (IST Austria) as well as researchers from the University of Leeds and the University of Geneva, have solved the mystery of these previously inexplicable oscillations. The theoretical explanation they proposed introduces a concept of a "quantum many-body scar" that alters our understanding of the dynamics that are possible in many-body quantum systems.

Imagine a ball bouncing around in an oval stadium. It will bounce around chaotically, back and forth through the available space. As its motion is random, it will sooner or later visit every place in the stadium. Amidst all the chaos, however, there might be a potential for order: if the ball happens to hit the wall at a special spot and at the "correct" angle of incidence, it might end up in a periodic orbit, visiting the same places in the stadium over and over and not visiting the others. Such a periodic orbit is extremely unstable as the slightest perturbation will divert the ball off its track and back into chaotic pondering around the stadium.

The same idea is applicable to quantum systems, except that instead of a ball bouncing around, we are looking at a wave, and instead of a trajectory, we are observing a probability function. Classical periodic orbits can cause a quantum wave to be concentrated in its vicinity, causing a "scar"-like feature in a probability that would otherwise be uniform. Such imprints of classical orbits on the probability function have been named "quantum scars". The phenomenon, however, was only expected to happen with a single quantum particle, as the complexity of the system rises dramatically with every additional particle, making periodic orbits more and more unlikely.

"Generally people assumed that it was impossible for many-body systems to have quantum scars, and when people first saw the oscillations they could not explain it," says Maksym Serbyn, Professor at IST Austria and co-author of the study. "By extending the concept of scars to quantum many-body systems, we were able to explain why these oscillations are there," he adds.

In the study, which was published in Nature Physics, the researchers explain the experimental observation with the occurrence of quantum many-body scars. They also identify the many-particle unstable periodic orbit behind the scar behavior as the coherent oscillation of atoms between the excited and ground states. Intuitively, the quantum many-body scar may be envisioned as a part of configuration space that is to some extent "shielded" from chaos, thus leading to a much slower relaxation. In other words: the system takes longer to return to chaos--the equilibrium state.

"We still don't know how common quantum many-body scars are, but we have found one example, and this is a paradigm shift," Serbyn says. But there is a lot left to find out. "We don't yet understand all the properties of many-body quantum scars, but we have successfully explained the data. We hope that a better understanding of quantum scars will provide a way of protecting quantum systems from relaxation."
IST Austria

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 33,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 for academic reputation in the QS World University Rankings 2018. Additionally, the University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching.

Institute of Science and Technology Austria

Related Quantum Articles:

Quantum material goes where none have gone before
Physicists have created a quantum material that can travel through a previously unexplored region marked by strange electronic properties.
'Poor man's qubit' can solve quantum problems without going quantum
Researchers have built and demonstrated the first hardware for a probabilistic computer, a possible way to bridge the gap between classical and quantum computing.
Quantum momentum
Occasionally we come across a problem in classical mechanics that poses particular difficulties for translation into the quantum world.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals
Engineering researchers have combined two emerging technologies for next-generation solar power -- and discovered that each one helps stabilize the other.
Quantum sensor for photons
A photodetector converts light into an electrical signal, causing the light to be lost.
Listening to quantum radio
Researchers at Delft University of Technology have created a quantum circuit that enables them to listen to the weakest radio signal allowed by quantum mechanics.
In the blink of an eye: Team uses quantum of light to create new quantum simulator
Imagine being stuck inside a maze and wanting to find your way out.
Is quantum computing scalable?
Debbie Leung, a fellow in CIFAR's Quantum Information Science program and a faculty member at the University of Waterloo's Institute for Quantum Computing, will discuss the challenges of scaling quantum computing at the AAAS meeting on Feb.
More Quantum News and Quantum Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.