Nav: Home

Tiny satellite's first global map of ice clouds

May 15, 2018

Looking at Earth from the International Space Station, astronauts see big, white clouds spreading across the planet. They cannot distinguish a gray rain cloud from a puffy white cloud. While satellites can see through many clouds and estimate the liquid precipitation they hold, they can't see the smaller ice particles that create enormous rain clouds.

An experimental small satellite has filled this void and captured the first global picture of the small frozen particles inside clouds, normally called ice clouds.

Deployed from the space station in May 2017, IceCube is testing instruments for their ability to make space-based measurements of the small, frozen crystals that make up ice clouds. "Heavy downpours originate from ice clouds," said Dong Wu, IceCube principal investigator at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Ice clouds start as tiny particles high in the atmosphere. Absorbing moisture, the ice crystals grow and become heavier, causing them to fall to lower altitudes. Eventually, the particles get so heavy, they fall and melt to form rain drops. The ice crystals may also just stay in the air.

Like other clouds, ice clouds affect Earth's energy budget by either reflecting or absorbing the Sun's energy and by affecting the emission of heat from Earth into space. Thus, ice clouds are key variables in weather and climate models.

This is a three-month average of ice clouds. The brightest peak areas represent the largest concentration of ice clouds. They are also the spots with heavy precipitation beneath. They reach up to the top of the troposphere from deep convection, which is normally strongest in the tropics.

Measuring atmospheric ice on a global scale remains highly uncertain because satellites have been unable to detect the amount of small ice particles inside the clouds, as these particles are too opaque for infrared and visible sensors to penetrate. To overcome that limitation, IceCube was outfitted with a submillimeter radiometer that bridges the missing sensitivity between infrared and microwave wavelengths.

Despite weighing only 10 pounds and being about size of a loaf of bread, IceCube is a bona fide spacecraft, complete with three-axis attitude control, deployable solar arrays and a deployable UHF communications antenna. The CubeSat spins around its axis, like a plate spinning on a pole. It points at Earth to take a measurement then looks at the cold space to calibrate.

Originally a 30-day technology-demonstration mission, IceCube is still fully operational in low-Earth orbit almost a year later, measuring ice clouds and providing data that's "good enough to do some real science," Wu said.

"The hard part about developing the CubeSat is making the commercial parts durable in space," said Tom Johnson, Goddard's Small Satellite manager stationed at NASA's Wallops Flight Facility in Virginia. "We bought commercial components for IceCube and spent a lot of time testing the components making sure each part worked."

Over the past year, engineers tested the satellite's limits while on orbit. They wanted to see if the instrument's batteries stored enough power to run 24 hours. IceCube charges its batteries when the Sun shines on its solar arrays. During the test, safeguards prevented the satellite from losing all its power and ending the mission; however, the test was successful. The batteries operated the IceCube all night and recharged during the day. This change made the CubeSat more valuable for science data collection.

While the IceCube team planned for the mission to operate for 30 days in space, "It does not cost very much to keep it going," Johnson said, "so we extended the mission due to the outstanding science that IceCube is performing. We download data eight to 10 times a week. Even if we miss a week, the CubeSat can hold a couple of weeks of data."

Johnson says he is not surprised by how long IceCube has lasted. "It will last about a year, when it will reenter Earth's atmosphere and burn up in."

The IceCube team built the spacecraft using funding from NASA's Earth Science Technology Office's (ESTO) In-Space Validation of Earth Science Technologies (InVEST) program and NASA's Science Mission Directorate CubeSat Initiative.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA. They have been used in planetary space exploration, fundamental Earth and space science, and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.
-end-


NASA/Goddard Space Flight Center

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Batteries -- quick coatings
Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries -- a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

Related Batteries Reading:

DIY Lithium Batteries: How to Build Your Own Battery Packs
by Micah Toll (Author)

Essentials of Cross-Battery Assessment
by Dawn P. Flanagan (Author), Samuel O. Ortiz (Author), Vincent C. Alfonso (Author), Alan S. Kaufman (Series Editor), Nadeen L. Kaufman (Series Editor)

The Battery: How Portable Power Sparked a Technological Revolution
by Henry Schlesinger (Author)

The Guests on South Battery (Tradd Street)
by Karen White (Author)

Battery: For Energy Storage
by Fouzia Begum (Author)

Batteries in a Portable World: A Handbook on Rechargeable Batteries for Non-Engineers, Fourth Edition
by Isidor Buchmann (Author)

Battery!: C. Lenton Sartain and the Airborne GIs of the 319th Glider Field Artillery
by Joseph S. Covais (Author), Judge C. Lenton Sartain (Preface), Mr. Sid Eells (Preface)

The Battery Builders Guide: How to Build, Rebuild and Recondition Lead-Acid Batteries
by Phillip Hurley (Author)

5 Things Every Golf Cart Owner Needs To Know About Their Golf Cart's Batteries
by Mr Michael K. Rosenbarker (Author)

Lithium-Ion Batteries: Basics and Applications
by Reiner Korthauer (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...