Nav: Home

Taming random gene changes as our bodies start to form

May 15, 2018

CINCINNATI - Scientists exploring how to tame random gene fluctuations as the embryos that become our bodies start to form have identified a control switch in the vertebrate segmentation clock of developing zebrafish. The researchers report in Cell Reports their findings could uncover methods for modulating genetic signals to prevent birth defects or cancers rooted at the earliest stages of development.

A multi-institutional team studies developmental systems in zebrafish because the vertebrates share common genes with humans and are ideal models for studying early human development, says the study's principal investigator, Ertugrul Ozbudak, PhD, a member of the Division of Developmental Biology at Cincinnati Children's Hospital Medical Center.

In this study, Ozbudak and colleague examined vertebrate development at a stage called somitogenesis--or when bilaterally paired blocks of cells called somites form along the front-to-rear-axis of the embryo. In vertebrates, somites become the deeper layers of skin, cartilage, skeletal muscle, etc.

The researchers counted single transcripts (or copies) of genes in the zebrafish segmentation clock. They showed that clock genes have very low amplitudes of RNA (ribonucleic acid). RNA carries genetic instructions that control proteins and tissue-forming cells. The authors demonstrate the random variables in genetic signals during somitogenesis aren't controlled from inside the genes. Instead, they are driven by external sources of noise, such as the effects of metabolism, etc.

These externally driven fluctuations in gene signaling are suppressed by the Notch pathway of genes and proteins. Notch is known to act as a control switch between cell expansion and the transformation of cells into specific tissue types. The researchers demonstrate it also serves this role during zebrafish somitogenesis.

"Our results suggest variability in gene expression is controlled by a balance between time delays and when cells are actively signaling in vertebrate tissue," says Ozbudak. "Further investigation should shed light on the accuracy of natural development clocks in animals and humans, and this could help inspire the development of robust synthetic oscillators that might help prevent certain birth defects or cancers."

Looking to the Future

Although the potential of this research having a beneficial clinical impact remains years away, the work gives scientists new possibilities for exploring how life forms--and how this new knowledge could positively impact health, according to the researchers.

Take the possibility of trying to a prevent cancer. During embryonic development, Notch is busy working as an activator of genes in the Hes family, according to Ozbudak. Hes genes are known to vary their signaling during early development of the vertebral column, as well as in other tissues.

Dysregulated Hes genes are also highly expressed in several types of human cancer, including rhabdomyosarcoma, a cancer affecting the body's connective tissues. The ability to oscillate and control gene expression at the earliest stages of development raises the question of whether it might be possible to stop early genetic programming as an embryo forms that might cause cancer years after a person's birth.
-end-
Collaborating Institutions, Funding Support

Also collaborating on the study were scientists from the Department of Genetics at Albert Einstein College of Medicine, the departments of Computer Science, Biology and Mathematics at Colgate University, and the departments of Electrical and Computing Engineering, Biomedical Engineering and Mathematical Sciences at the University of Delaware.

Funding support came in part from the National Institutes of Health (GM111987, GM122956) and a Colgate Picker Interdisciplinary Science Institute Grant.

Cincinnati Children's Hospital Medical Center

Related Birth Defects Articles:

Weight-loss surgery cuts risk of birth defects
Children born to women who underwent gastric bypass surgery before becoming pregnant had a lower risk of major birth defects than children born to women who had severe obesity at the start of their pregnancy.
Defective cilia linked to heart valve birth defects
Bicuspid aortic valve (BAV), the most common heart valve birth defect, is associated with genetic variation in human primary cilia during heart valve development, report Medical University of South Carolina researchers in Circulation.
Findings shed new light on why Zika causes birth defects in some pregnancies
A new study shows that the risk of giving birth to a child with microcephaly might be related to how the immune system reacts against the Zika virus -- specifically what kind of antibodies it produces.
Study reveals elevated cancer risk in children with birth defects
A collaborative team of scientists led by Baylor College of Medicine has assembled the largest study to date to evaluate cancer risk in children with birth defects.
Severe air pollution can cause birth defects, deaths
In a comprehensive study, researchers from Texas A&M University have determined that harmful particulate matter in the atmosphere can produce birth defects and even fatalities during pregnancy using the animal model.
Famous cancer-fighting gene also protects against birth defects
New research has revealed how the famous tumour suppressor gene p53 is surprisingly critical for development of the neural tube in female embryos.
Biomarkers may predict Zika-related birth defects
The highest risk of birth defects is from Zika virus infection during the first and second trimester.
After 60 years, scientists uncover how thalidomide produced birth defects
More than 60 years after the drug thalidomide caused birth defects in thousands of children whose mothers took the drug while pregnant, scientists at Dana-Farber Cancer Institute have solved a mystery that has lingered ever since the dangers of the drug first became apparent: how did the drug produce such severe fetal harm?
Antiepileptic drug induces birth defects in frogs
A common drug for treating epileptic seizures may lead to birth defects if used during pregnancy by interfering with glutamate signaling in earliest stages of nervous system development, finds a study in frogs published in JNeurosci.
All in the family: Relatives of Zika virus may cause birth defects
Relatives of Zika virus can damage developing fetuses in mice and were able to replicate in human maternal and fetal tissues, researchers report.
More Birth Defects News and Birth Defects Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.