Nav: Home

Scientists crack how primordial life on Earth might have replicated itself

May 15, 2018

Scientists have created a new type of genetic replication system which demonstrates how the first life on Earth - in the form of RNA - could have replicated itself. The scientists from the Medical Research Council (MRC) Laboratory of Molecular Biology say the new RNA utilises a system of genetic replication unlike any known to naturally occur on Earth today.

A popular theory for the earliest stages of life on Earth is that it was founded on strands of RNA, a chemical cousin of DNA. Like DNA, RNA strands can carry genetic information using a code of four molecular letters (bases), but RNA can be more than a simple 'string' of information. Some RNA strands can also fold up into three-dimensional shapes that can form enzymes, called ribozymes, and carry out chemical reactions.

If a ribozyme could replicate folded RNA, it might be able to copy itself and support a simple living system.

Previously, scientists had developed ribozymes that could replicate straight strands of RNA, but if the RNA was folded it blocked the ribozyme from copying it. Since ribozymes themselves are folded RNAs, their own replication is blocked.

Now, in a paper published today in the journal eLife, the scientists have resolved this paradox by engineering the first ribozyme that is able to replicate folded RNAs, including itself.

Normally when copying RNA, an enzyme would add single bases (C, G, A or U) one at a time, but the new ribozyme uses three bases joined together, as a 'triplet' (e.g. GAU). These triplet building blocks enable the ribozyme to copy folded RNA, because the triplets bind to the RNA much more strongly and cause it to unravel - so the new ribozyme can copy its own folded RNA strands.

The scientists say that the 'primordial soup' could have contained a mixture of bases in many lengths - one, two, three, four or more bases joined together - but they found that using strings of bases longer than a triplet made copying the RNA less accurate.

Dr Philipp Holliger, from the MRC Laboratory of Molecular Biology and senior author on the paper, said: "We found a solution to the RNA replication paradox by re-thinking how to approach the problem - we stopped trying to mimic existing biology and designed a completely new synthetic strategy. It is exciting that our RNA can now synthesise itself.

"These triplets of bases seem to represent a sweet spot, where we get a nice opening up of the folded RNA structures, but accuracy is still high. Notably, although triplets are not used in present-day biology for replication, protein synthesis by the ribosome - an ancient RNA machine thought to be a relic of early RNA-based life - proceeds using a triplet code.

"However, this is only a first step because our ribozyme still needs a lot of help from us to do replication. We provided a pure system, so the next step is to integrate this into the more complex substrate mixtures mimicking the primordial soup - this likely was a diverse chemical environment also containing a range of simple peptides and lipids that could have interacted with the RNA."

The experiments were conducted in ice at -7°C, because the researchers had previously discovered that freezing concentrates the RNA molecules in a liquid brine in tiny gaps between the ice crystals. This also is beneficial for the RNA enzymes, which are more stable and function better at cold temperatures.

Dr Holliger added: "This is completely new synthetic biology and there are many aspects of the system that we have not yet explored. We hope in future, it will also have some biotechnology applications, such as adding chemical modifications at specific positions to RNA polymers to study RNA epigenetics or augment the function of RNA."

Dr Nathan Richardson, Head of Molecular and Cellular Medicine at the MRC, said: "This is a really exciting example of blue skies research that has revealed important insights into how the very beginnings of life may have emerged from the 'primordial soup' some 3.7 billion years ago. Not only is this fascinating science, but understanding the minimal requirements for RNA replication and how these systems can be manipulated could offer exciting new strategies for treating human disease."
-end-


Medical Research Council

Related Rna Articles:

How RNA formed at the origins of life
A single process for how a group of molecules called nucleotides were made on the early Earth, before life began, has been suggested by a UCL-led team of researchers.
RNA and longevity: Discovering the mechanisms behind aging
Korean researchers suggests that NMD-mediated RNA quality control is critical for longevity in the roundworm called C. elegans, a popularly used animal for aging research.
Don't kill the messenger RNA
Success of new protein-making therapy for hemophilia opens door for treating many other diseases.
RNA modification important for brain function
Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) have shown that a new way of regulating genes is vital for the activity of the nervous system.
Atlas of the RNA universe takes shape
In the last few years, small snippets of RNA, which may have played a key role in the planet's earliest flickering of life, have been uncovered and examined in great detail.
Punching cancer with RNA knuckles
Researchers achieved an unexpected eye-popping reduction of ovarian cancer during successful tests of targeted nanohydrogel delivery in vivo in mice.
Gatekeeping proteins to aberrant RNA: You shall not pass
Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus.
Short RNA molecules mapped in single cell
Researchers at Karolinska Institutet have measured the absolute numbers of short, non-coding, RNA sequences in individual embryonic stem cells.
Watching RNA fold
New technology takes a nucleotide-resolution snapshot of RNA as it is folding, which could lead to discoveries in biology, gene expression, and disease.
Bacteria: Third RNA binding protein identified
Pathogenic bacteria use small RNA molecules to adapt to their environment.

Related Rna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...