Nav: Home

Biologists find mechanisms that control where transcription factors bind

May 15, 2018

A team of biologists has determined how transcription factors (TFs), which guide gene regulation, function differently in embryonic development. The results help illuminate how cells acquire distinct functions as the embryo matures.

"The basic principles learned from these findings are important in understanding how the activities of transcription factors control development of higher organisms, including mice and humans," observes Stephen Small, a professor in New York University's Department of Biology and one of the researchers. "More specifically, the results offer a potential pathway to better grasp how mutated genes that interfere with transcription factors can cause profound disruptions in embryonic development and result in a range of diseases, including cancer."

The study, which is reported in the journal Genes & Development, also included scientists from Harvard Medical School and Johns Hopkins University.

Biologists have historically had difficulty precisely understanding how transcription factors control embryo development. This is because they number in the hundreds and different combinations are expressed in individual cell types as development proceeds.

Moreover, studies have produced conflicting results. For example, in previous biochemical experiments, researchers have shown that individual TFs within a family bind to the same DNA sequence; but, genetic experiments have revealed that they have very different activities in the cells of a developing embryo.

"Thus, the rules that determine where a specific TF will bind within an organism, and consequently which target genes it will activate, are still unclear," explains Small.

In the Genes & Development study, led by Rhea Datta, a postdoctoral fellow at NYU's Center for Developmental Genetics, the scientists examined two similar TFs (Bicoid [Bcd] and Orthodenticle [Otd]) in the fruit fly Drosophila that were previously shown to bind a common DNA sequence (TAATCC).

They directly mapped the genomic regions that Bcd and Otd bind to in the embryo and showed that some regions are bound by both proteins while others are bound only by Bcd or Otd. They further showed that each protein prefers to bind sequences that differ by only a single base from the TAATCC common sequence. Finally, binding by Bcd occurred only in genomic regions containing binding sites for two other TFs that may facilitate Bcd binding.

The data, the researchers conclude, identified a precise DNA "sequence code" that controls how TFs function correctly in specifying cell fates within a living embryo.
-end-
The research was supported by grants from the National Institutes of Health (RO1 HG005287, GM106090).

New York University

Related Embryonic Development Articles:

Shocking embryonic limbs into shape
In a new study published in EPJ E, Vincent Fleury and Ameya Vaishnavi Murukutla from Universite Paris Diderot, Paris, France use the stimulation of chicken embryos with electric shocks to propose a mechanism for vertebrate limb formation.
Using an embryonic pause to save the date
A date palm seedling can pause its development to boost its resilience before emerging into the harsh desert environment.
Growing embryonic tissues on a chip
Researchers at EPFL have developed a method to stimulate human stem cells to organize themselves into ordered layers of different cell types.
How the fruit fly got its stripes: Researchers explore precision of embryonic development
A team at Princeton found that early steps in fruit fly development occur according to a mathematically optimal process.
New microscope offers 4D look at embryonic development in living mice
With the development of an adaptive, multi-view light sheet microscope and a suite of computational tools, researchers have captured the first view of early organ development inside the mouse embryo.
More Embryonic Development News and Embryonic Development Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...