Nav: Home

Where there's waste there's fertilizer

May 15, 2019

May 15, 2019 - We all know plants need nutrients, especially nitrogen and phosphorus. To give crops a boost, they are often put on fields as fertilizer. But we never talk about where the nutrients themselves come from.

Phosphorus, for example, is taken from the Earth, and in just 100-250 years, we could be facing a terrible shortage. That is, unless scientists can find ways to recycle it.

Scientists at Tel Hai College and MIGAL Institute in Israel are working on a way to make phosphorus fertilizer from an unlikely source -- dairy wastewater.

Additionally, they are taking the element from the wastewater with another unlikely character. They are using the leftovers that comes from making clean drinking water, which contain the element aluminum.

"The material left after purification, called aluminum water treatment residue, is normally taken to a landfill to be buried," says Michael "Iggy" Litaor, who led this work. "We changed this material by mixing it with dairy wastewater rich with phosphorus and organic matter. We then found it can be just as good as common fertilizers."

The benefits of the practice could go beyond recycling the element. Putting too much of the commercially available fertilizers on fields can hurt the quality of water nearby.

"Phosphorus is an important nutrient needed by most crops," Litaor explains. "However, it is a non-renewable resource. If we continue with the current rate of use, what we have may be depleted in 100 to 250 years. There are also side-effects of too much fertilizer. Hence, scientists around the world are searching for simple and affordable ways to recycle the element without lowering crop yield."

In their study, Litaor and his team mixed the aluminum water treatment residue with dairy wastewater. Dairy wastewater comes from washing cow udders before milking and from cooling cows during hot summer days. It is high in phosphorus because of detergents used while cleaning the sheds that house the cows as well as runoff from cows' urine.

What allows the mixture to become fertilizer is the magic of chemistry. Reactions occur between the phosphorus, aluminum, and organic matter that result in it being a possible fertilizer.

Litaor and his team then put the potential fertilizer on lettuce to see how well it worked. They found it did just as well as common fertilizers.

"This experiment clearly showed that we can use aluminum refuse to recapture phosphorus from dairy wastewater and use it as fertilizer," he says. "We showed that the water treatment residue can take phosphorus from the wastewater and put it in soil that doesn't have much phosphorus. This may offset somewhat the mining of this non-renewable resource."

If this method of making fertilizer were to become widely practiced, Litaor sees the possibility of building plants next to dairies with lots of cattle. This would give a large supply of phosphorus. A company could bring in the leftovers from water treatment systems to produce fertilizer. It could be used by large farms or sold to others.

He says the next step in this research is to look at the use of water treatment leftovers that contain iron, because many soils also lack this element. The scientists must also show that no unwanted material such as hormones and antibiotics are in the fertilizer.

"I also want to find an investor who will support us taking this idea to the marketplace," he adds. "After many years of research on phosphorus in wetlands, streams, and rivers, I decided to look for an efficient means to recycle the element using wastes we were already producing."
-end-
Read more about this research in the Soil Science Society of America Journal. This research was supported by the United States-Israel Binational Agricultural Research and Development Fund and the Israel Department of Agriculture.

American Society of Agronomy

Related Wastewater Articles:

Bacteria-coated nanofiber electrodes clean pollutants in wastewater
Cornell University researchers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
Bacteria may supercharge the future of wastewater treatment
Wastewater treatment plants have a PR problem: People don't like to think about what happens to the waste they flush down their toilets.
Wastewater injection rates may have been key to Oklahoma's largest earthquake
Changes to the rate of wastewater injection in disposal wells may have contributed to conditions that led to last year's Pawnee earthquake in Oklahoma, according to a new report published May 3 as part of a focus section in Seismological Research Letters.
'Peeling the onion' to get rid of odors near wastewater treatment plants
Nuisance smells from sewage and wastewater treatment facilities are a worldwide problem.
Wastewater cleaned thanks to a new adsorbent material made from fruit peels
Researchers from the University of Granada, and from the Center for Electrochemical Research and Technological Development and the Center of Engineering and Industrial Development, both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.
Wastewater treatment upgrades result in major reduction of intersex fish
Upgrades to a wastewater treatment plant along Ontario's Grand River, led to a 70 per cent drop of fish that have both male and female characteristics within one year and a full recovery of the fish population within three years, according to researchers at the University of Waterloo.
Wastewater research may help protect aquatic life
New wastewater system design guidelines developed at UBC can help municipal governments better protect aquatic life and save millions of dollars a year.
Germs in wastewater often become airborne
Using household wastewater to irrigate food crops in drought-stricken or arid regions isn't the perfect solution.
CU Boulder engineers transform brewery wastewater into energy storage
University of Colorado Boulder engineers have developed an innovative bio-manufacturing process that uses a biological organism cultivated in brewery wastewater to create the carbon-based materials needed to make energy storage cells.
Blending wastewater may help California cope with drought
Researchers at UC Riverside have developed an economic model that demonstrates how flexible wastewater treatment processes which blend varying levels of treated effluent can create a water supply that benefits crops and is affordable.

Related Wastewater Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".