Nav: Home

Artificial intelligence tool vastly scales up Alzheimer's research

May 15, 2019

Video: https://youtu.be/HmF1iuxpiiA

Researchers at UC Davis and UC San Francisco have found a way to teach a computer to precisely detect one of the hallmarks of Alzheimer's disease in human brain tissue, delivering a proof of concept for a machine-learning approach to distinguishing critical markers of the disease.

Amyloid plaques are clumps of protein fragments in the brains of people with Alzheimer's disease that destroy nerve cell connections. Much like the way Facebook recognizes faces based on captured images, the machine learning tool developed by a team of University of California scientists can "see" if a sample of brain tissue has one type of amyloid plaque or another, and do it very quickly.

The findings, published May 15 in Nature Communications, suggest that machine learning can augment the expertise and analysis of an expert neuropathologist. The tool allows them to analyze thousands of times more data and ask new questions that would not be possible with the limited data processing capabilities of even the most highly trained human experts.

"We still need the pathologist," said Brittany N. Dugger, PhD, an assistant professor in the UC Davis Department of Pathology and Laboratory Medicine at UC Davis and lead author of the study. "This is a tool, like a keyboard is for writing. As keyboards have aided in writing workflows, digital pathology paired with machine learning can aid with neuropathology workflows."

In this study, she partnered with Michael J. Keiser, PhD, an assistant professor in UCSF's Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, to determine if they could teach a computer to automate the laborious process of identifying and analyzing tiny amyloid plaques of various types in large slices of autopsied human brain tissue. For this job, Keiser and his team designed a "convolutional neural network" (CNN), a computer program designed to recognize patterns based on thousands of human-labeled examples.

To create enough training examples to teach the CNN algorithm how Dugger analyzes brain tissue, the UCSF team worked with her to devise a method that allowed her to rapidly annotate or label tens of thousands of images from a collection half a million close-up images of tissue from 43 healthy and diseased brain samples.

Like a computer dating service that allows users to swipe left or right to label someone's photo "hot" or "not," they developed a web platform that allowed Dugger to look one-at-a-time at highly zoomed-in regions of potential plaques and quickly label what she saw there. This digital pathology tool -- which researchers called "blob or not" -- allowed Dugger to annotate more than 70,000 "blobs," or plaque candidates, at a rate of about 2,000 images per hour.

The UCSF team used this database of tens of thousands of labeled example images to train their CNN machine-learning algorithm to identify different types of brain changes seen in Alzheimer's disease. That includes discriminating between so-called cored and diffuse plaques and identifying abnormalities in blood vessels. The researchers showed that their algorithm could process an entire whole-brain slice slide with 98.7% accuracy, with speed only limited by the number of computer processors they used. (In the current study they used a single graphics card like those used by home gamers.)

The team then performed rigorous tests of the computer's identification skills to make sure its analysis was biologically valid.

"It's notoriously hard to know what a machine-learning algorithm is actually doing under the hood, but we can open the black box and ask it to show us why it made its predictions," Keiser explained.

Keiser emphasized that the machine learning tool is no better at identifying plaques than Dugger, the neuropathologist who trained the computer to find them in the first place.

"But it's tireless and scalable," he said. "It's a co-pilot, a force multiplier that extends the scope of what we can accomplish and lets us ask questions we never would have attempted manually. For example, we can look for rare plaques in unexpected places that could give us important clues about the course of the disease.

To promote use of the tool, the researchers have made it and the study data publicly available online. This has already generated interactions with other researchers who have evaluated the data and the algorithms in their own labs. In the future, the researchers hope that such algorithms will become a standard part of neuropathology research, trained to help scientists analyze vast amounts of data, tirelessly seeking out patterns that could unlock new insights into causes and potential treatments for the disease.

"If we can better characterize what we are seeing, this could provide further insights into the diversity of dementia," Dugger said. "It opens the door to precision medicine for dementias."

She added, "These projects are phenomenal examples of cross-disciplinary translational science; neuropathologists, a statistician, a clinician, and engineers coming together, forming a dialogue and working together to solve a problem."
-end-
Other study authors included: Charles DeCarli, Lee-Way Jin and Laurel Beckett from UC Davis; Ziqi Tang of UCSF and Tsinghua University in Beijing, China, and Kangway V. Chuang of UCSF.

The study was funded by an NIH P30 AG010129, Paul G. Allen Family Foundation Distinguished Investigator Award and the China Scholarship Council.

The authors declare no conflicting interests.

University of California - Davis Health

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.