Nav: Home

Amount of carbon stored in forests reduced as climate warms

May 15, 2019

Accelerated tree growth caused by a warming climate does not necessarily translate into enhanced carbon storage, an international study suggests.

The team, led by the University of Cambridge, found that as temperatures increase, trees grow faster, but they also tend to die younger. When these fast-growing trees die, the carbon they store is returned to the carbon cycle.

The results, reported in the journal Nature Communications, have implications for global carbon cycle dynamics. As the Earth's climate continues to warm, tree growth will continue to accelerate, but the length of time that trees store carbon, the so-called carbon residence time, will diminish.

During photosynthesis, trees and other plants absorb carbon dioxide from the atmosphere and use it to build new cells. Long-lived trees, such as pines from high elevations and other conifers found across the high-northern latitude boreal forests, can store carbon for many centuries.

"As the planet warms, it causes plants to grow faster, so the thinking is that planting more trees will lead to more carbon getting removed from the atmosphere," said Professor Ulf Büntgen from Cambridge's Department of Geography, the study's lead author. "But that's only half of the story. The other half is one that hasn't been considered: that these fast-growing trees are holding carbon for shorter periods of time."

Büntgen uses the information contained in tree rings to study past climate conditions. Tree rings are as distinctive as fingerprints: the width, density and anatomy of each annual ring contains information about what the climate was like during that particular year. By taking core samples from living trees and disc samples of dead trees, researchers are able to reconstruct how the Earth's climate system behaved in the past and understand how ecosystems were, and are, responding to temperature variation.

For the current study, Büntgen and his collaborators from Germany, Spain, Switzerland and Russia, sampled more than 1100 living and dead mountain pines from the Spanish Pyrenees and 660 Siberian larch samples from the Russian Altai: both high-elevation forest sites that have been undisturbed for thousands of years. Using these samples, the researchers were able to reconstruct the total lifespan and juvenile growth rates of trees that were growing during both industrial and pre-industrial climate conditions.

The researchers found that harsh, cold conditions cause tree growth to slow, but they also make trees stronger, so that they can live to a great age. Conversely, trees growing faster during their first 25 years die much sooner than their slow-growing relatives. This negative relationship remained statistically significant for samples from both living and dead trees in both regions.

The idea of a carbon residence time was first hypothesised by co-author Christian Körner, Emeritus Professor at the University of Basel, but this is the first time that it has been confirmed by data.

The relationship between growth rate and lifespan is analogous to the relationship between heart rate and lifespan seen in the animal kingdom: animals with quicker heart rates tend to grow faster but have shorter lives on average.

"We wanted to test the 'live fast, die young' hypothesis, and we've found that for trees in cold climates, it appears to be true," said Büntgen. "We're challenging some long-held assumptions in this area, which have implications for large-scale carbon cycle dynamics."
-end-


University of Cambridge

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Unraveling truly one-dimensional carbon solids
Elemental carbon appears in many different forms, including diamond and graphite.
Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
Consumers care about carbon footprint
How much do consumers care about the carbon footprint of the products they buy?
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.

Related Carbon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".