Nav: Home

Ice-sheet variability during the last ice age from the perspective of marine sediment

May 15, 2019

By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought. This study was published on May 10 in the journal Scientific Reports.

Knowledge regarding the nature of past climate variability is essential for understanding current climate change and providing context for interpretation of model results. Especially, past ice-sheet variability provides an important insight of future ice-sheet and sea-level change. During the last ice age, continental ice sheets reached their maximum volume approximately 20,000 years ago, resulting in a large drop in global sea level. Therefore, ice-sheet dynamics may be inferred from the sea-level history.

However, there are few places on earth appropriate for investigating past sea-level change, and different locations records conflicting information. The main problem is that local elevation changes can affect how each location records the history of sea-level change. To address this issue, the team ventured to the Bonaparte Gulf in Northwestern Australia, which is a far-field from the locations of past ice sheets. The weight of an ice sheet deforms the Earth's crust, causing proximal depression and distal bulging (GIA: glacial isostatic adjustment). The gently sloping sea floor in the Bonaparte in relatively free of the effects of this crustal deformation, making it an ideal location to investigate past sea-level change.

This sea-level reconstruction was accomplished through a combination of a transect of ten sediment cores, collected during cruise KH11-1 of the R/V Hakuho-Maru (Figure 1), paleo-tidal reconstruction, and GIA modeling. The sedimentary environment of the Bonaparte Gulf changed with sea level, allowing for paleo-water depth information to be extracted from the network of sediment cores. The timing of these water depth changes was constrained by over 100 radiocarbon dates to obtain a local history of relative sea-level change. Paleo-tidal modeling clarified the uncertainty in this record, which was converted into a global ice-volume history for the last ice age by accounting for isostatic effects.

Results indicate that the trend of decreasing sea level was briefly interrupted by a period of stability from about 26,000 to 20,000 years ago during the last ice age (Figure 2). A geologically rapid, 10-m global decrease in sea level then occurred over about 1,000 years. "This sea-level history reveals short-period ice-sheet dynamics during the last ice age, which the current generation of climate models have not considered" said the first author, NIPR scientist Takeshige Ishiwa. "A better understanding of ice sheet dynamics will improve prediction of future climate change by model simulations."
-end-


Research Organization of Information and Systems

Related Sea Level Articles:

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.
As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.
Why is sea level rising faster in some places along the US East Coast than others?
Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere.
Snow over Antarctica buffered sea level rise during last century
A new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches.
Global sea level could rise 50 feet by 2300, study says
Global average sea-level could rise by nearly 8 feet by 2100 and 50 feet by 2300 if greenhouse gas emissions remain high and humanity proves unlucky, according to a review of sea-level change and projections by Rutgers and other scientists.
Study: Reducing carbon emissions will limit sea level rise
A new study demonstrates that a correlation also exists between cumulative carbon emissions and future sea level rise over time -- and the news isn't good.
Antarctica ramps up sea level rise
Ice losses from Antarctica have increased global sea levels by 7.6 mm since 1992, with two fifths of this rise (3.0 mm) coming in the last five years alone.
Coral reefs losing ability to keep pace with sea-level rise
Many coral reefs will be unable to keep growing fast enough to keep up with rising sea levels, leaving tropical coastlines and low-lying islands exposed to increased erosion and flooding risk, new research suggests.
Connection of sea level and groundwater missing link in climate response
About 250 million years ago, when the Earth had no ice caps and the water around the equator was too hot for reptiles, sea level still rose and fell over time.
Researchers issue first-annual sea-level report cards
Researchers are launching new web-based 'report cards' to monitor and forecast changes in sea level at 32 localities along the US coastline from Maine to Alaska.
More Sea Level News and Sea Level Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.