Ice-sheet variability during the last ice age from the perspective of marine sediment

May 15, 2019

By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought. This study was published on May 10 in the journal Scientific Reports.

Knowledge regarding the nature of past climate variability is essential for understanding current climate change and providing context for interpretation of model results. Especially, past ice-sheet variability provides an important insight of future ice-sheet and sea-level change. During the last ice age, continental ice sheets reached their maximum volume approximately 20,000 years ago, resulting in a large drop in global sea level. Therefore, ice-sheet dynamics may be inferred from the sea-level history.

However, there are few places on earth appropriate for investigating past sea-level change, and different locations records conflicting information. The main problem is that local elevation changes can affect how each location records the history of sea-level change. To address this issue, the team ventured to the Bonaparte Gulf in Northwestern Australia, which is a far-field from the locations of past ice sheets. The weight of an ice sheet deforms the Earth's crust, causing proximal depression and distal bulging (GIA: glacial isostatic adjustment). The gently sloping sea floor in the Bonaparte in relatively free of the effects of this crustal deformation, making it an ideal location to investigate past sea-level change.

This sea-level reconstruction was accomplished through a combination of a transect of ten sediment cores, collected during cruise KH11-1 of the R/V Hakuho-Maru (Figure 1), paleo-tidal reconstruction, and GIA modeling. The sedimentary environment of the Bonaparte Gulf changed with sea level, allowing for paleo-water depth information to be extracted from the network of sediment cores. The timing of these water depth changes was constrained by over 100 radiocarbon dates to obtain a local history of relative sea-level change. Paleo-tidal modeling clarified the uncertainty in this record, which was converted into a global ice-volume history for the last ice age by accounting for isostatic effects.

Results indicate that the trend of decreasing sea level was briefly interrupted by a period of stability from about 26,000 to 20,000 years ago during the last ice age (Figure 2). A geologically rapid, 10-m global decrease in sea level then occurred over about 1,000 years. "This sea-level history reveals short-period ice-sheet dynamics during the last ice age, which the current generation of climate models have not considered" said the first author, NIPR scientist Takeshige Ishiwa. "A better understanding of ice sheet dynamics will improve prediction of future climate change by model simulations."
-end-


Research Organization of Information and Systems

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.