Nav: Home

Magic numbers make nickel nucleus stronger

May 15, 2019

Researchers provide the first direct evidence for a rare kind of atomic nucleus. The special nickel nucleus (78Ni) is an isotope of typical nickel (58Ni), meaning they share the same number of protons but a different number of neutrons. Usually more neutrons make isotopes less stable, but this isotope is special. 78Ni is more tough or rigid than other nickel isotopes with similar numbers of neutrons -- it takes more energy to excite 78Ni into a different state.

Large things like planets are held together by gravity. Smaller things, such as cats, are held together by electromagnetism. These forces are very familiar in everyday life. But delve deeper beyond even the atomic level and you find that subatomic particles -- nucleons -- which make up atomic nuclei are held together by the strong nuclear force. This subatomic realm is where UTokyo researcher Ryo Taniuchi and colleagues explore.

A typical nickel atom has 28 electrons (negative charges) surrounding a nucleus of 28 protons (positively charged nucleons) and 30 neutrons (neutral nucleons). Seventy percent of all nickel in the world is like this. The greater the disparity between neutrons and protons in nickel, the more susceptible it is to the destabilizing effect known as beta-decay. However even though 78Ni has many more neutrons than typical nickel isotopes, it is tougher than most of them.

So why is 78Ni so special and what makes it so rigid?

It's because of magic, but not the Harry Potter kind. In nuclear physics, magic numbers refer to a number of protons or neutrons that are said to form complete shells within the nucleus, structures that are more robust than incomplete shells. The idea of these shells is somewhat euphemistic as we're talking about the quantum domain where the logic of everyday experience doesn't apply. But a complete shell in this case relates to the strength of the nucleus. It takes more energy to excite and destabilize nuclei with complete shells.

So if an atom has a magic number of protons, it will be tougher than one which does not. Similarly if an atom has a magic number of neutrons, it too is tougher than one which does not. However, if an atom has both magic numbers of protons and neutrons, then it's called doubly magic and is expected to be even tougher still. Taniuchi and colleagues demonstrated that 78Ni is doubly magic, but this was no simple trick.

"As far as we're aware 78Ni does not exist on Earth, so to study it we had to make some," said Taniuchi. "To do this we had to break apart some heavy uranium, 238U, which is good for making neutron-rich nuclei. For this we used the powerful Radioactive Isotope Beam Factory (RIBF) at RIKEN in Japan."

The researchers used RIBF to smash 238U particles on a target to induce an artificial fission (splitting) reaction. 78Ni was one of the products of the reactions they set up. Instruments at RIBF also allowed them to probe the sample they created. To do this the researchers observed gamma rays (a kind of radiation) from their excited 78Ni sample and recorded their characteristics. In this case, Taniuchi and colleagues looked for a telltale signature in the gamma-ray data to confirm their hypothesis.

"This was an extremely difficult task and took a long time, but it was worth it for my Ph.D. You need sufficient data to identify the doubly magic characteristic and we struggled to get that despite access to the world-leading accelerator facility, RIBF," said Taniuchi. "After the experiment, colleagues from around the world helped analyze the data. Results suggest 78Ni is doubly magic, but also that the magic nature suddenly disappears in isotopes beyond 78Ni."

You might wonder what is so important about 78Ni in the first place. Its existence may actually be pivotal to understanding the origin of matter. Life may not have been possible without it.

"The Earth as we know it would not be the same without certain heavy elements, so it's important to know where these came from. We know that many are made in supernova explosions -- the death throes of giant stars -- or even in collisions between neutron stars," explained Taniuchi. "There is strong reason to believe that 78Ni and unstable nuclei beyond play a significant role in this process -- called nucleosynthesis. As a consequence of our discovery, researchers exploring this fascinating field can create better ideas about the origin of matter."
-end-
Journal article

R. Taniuchi, S. Momiyama, M. Niikura, T. Otsuka, H. Sakurai, Y. Tsunoda, K. Matsui, T. Miyazaki, et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature. DOI: 10.1038/s41586-019-1155-x

European Research Council grants MINOS-258567, 307986 STRONGINT, SFB 1245 and 05P18RDFN1. Japan Society for the Promotion of Science grants JP14J08718, L-13520. Japanese Ministry of Education, Culture, Sports, Science and Technology grants JP18K03639 and JP16K05352. Spanish Ministry of Economy and Business grants FPA2014-57916, SEV-2016-0597. Vietnam Ministry of Science and Technology grant TLCN.25/18. Hungarian Academy of Sciences grant GINOP-2.3.3-15-2016-00034. German Federal Ministry of Education and Research grants 05P15RDNF1 and 05P12RDNF8.

Department of Physics - http://www.phys.s.u-tokyo.ac.jp/en/

Graduate School of Science - https://www.s.u-tokyo.ac.jp/en/index.html

Research Contact

Professor Hiroyoshi Sakurai
Department of Physics, Graduate School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
Tel: +81-3-5841-4237
Email: sakurai@phys.s.u-tokyo.ac.jp

Press Contact

Ms. Kristina Awatsu
Office of Communication, Graduate School of Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN
Tel: +81-3-5841-8737
E-mail: kouhou.s@gs.mail.u-tokyo.ac.jp

Mr. Rohan Mehra
Division for Strategic Public Relations, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Neutrons Articles:

Students make neutrons dance beneath UC Berkeley campus
Nuclear reactors are still the primary source for strong neutron beams to create isotopes for geologic dating, radiography and medicine, but researchers at UC Berkeley have enlisted engineering students in building a tabletop neutron source that could be nearly as effective.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Nuclear 'magic numbers' collapse beyond the doubly magic nickel 78
Scientists have demonstrated that nickel 78, a neutron-rich 'doubly magic' isotope of nickel with 28 protons and 50 neutrons, still maintains a spherical shape that allows it to be relatively stable despite the large imbalance in the number of protons and neutrons.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
'Featherweight oxygen' discovery opens window on nuclear symmetry
Researchers at Washington University in St. Louis have discovered and characterized a new form of oxygen dubbed 'featherweight oxygen' -- the lightest-ever version of the familiar chemical element oxygen, with only three neutrons to its eight protons.
More Neutrons News and Neutrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...