Nav: Home

Clean and effective electronic waste recycling

May 15, 2019

As the number of electronics devices increases around the world, finding effective methods of recycling electronic waste (e-waste) is a growing concern. About 50 million tons of e-waste is generated each year and only 20% of that is recycled. Most of the remaining 80% ends up in a landfill where it can become an environmental problem. Currently, e-waste recycling involves mechanical crushers and chemical baths, which are expensive, and manual labor, which can cause significant health and environmental problems when not performed properly. Thus, researchers from Kumamoto University, Japan have been using pulsed power (pulsed electric discharges) to develop a cleaner and more efficient recycling method.

Pulsed power has been shown to be successful in processing various waste materials, from concrete to waste water. To test its ability to be used in e-waste recycling, researchers examined its effectiveness in separating components found in one of the most prolific types of e-waste, CD ROMs. In previous work, they showed that complete separation of metal from plastic occurred using 30 pulses at about 35 J/pulse (At the current price of electricity in Tokyo, this amount of energy costs about 0.4 Yen for recycling 100 CD ROMs). To examine the mechanism of material separation using this method, researchers performed further analyses by observing the plasma discharge with a high-speed camera, by taking schlieren visualizations to assess the shock wave, and using shadowgraph images to measure fragment motion.

Images at the early stage of electrical discharge showed two distinct light emissions: blue-white and orange. These indicated excitation of aluminum and upper protective plastic materials respectively. After the plasma dissipated, fragments of metal and plastic could be seen flying away from the CD ROM sample.

Schlieren images were taken throughout the process and revealed that the main destructive shock waves developed around the two electrodes. The shock produced a pressure of over 3.5 MPa (about the same amount of pressure a galloping horse will exert on the ground) near the tips of the electrodes and quickly fell to below 0.8 MPa at 7.1 mm. In both the schlieren and shadowgraph images, material dispersal was very clearly observed.

"E-waste is perhaps one of the most important waste recycling problems we face today due to its ubiquitous nature," said study leader Professor Hamid Hosano. "Our project showed the importance of shock waves when using pulse power for material removal and separation in e-waste recycling. We believe our data will be important in the development of future recycling projects."

This work was published online in Waste Management on 3 April 2019.
-end-
[Source]

Yamashita, T., Akiyama, H., Sakugawa, T., Hosano, H., 2019. Metal-coated plastics recycling by pulsed electric discharge. Waste Management, 89, pp.57-63. Available at: http://dx.doi.org/10.1016/j.wasman.2019.03.069.

Kumamoto University

Related Recycling Articles:

Recycling plant material into stock chemicals with electrochemistry
While most people think of recycling in terms of the packaging for household products, the concept can extend to the chemistry to make them in the first place.
Researchers develop recycling for carbon fiber composites
A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.
Making bins more convenient boosts recycling and composting rates
Want to recycle or compost more? Try moving the bins closer, new UBC research suggests.
'Recycling protein' shown to affect learning and memory in mice
Learning and memory depend on cells' ability to strengthen and weaken circuits in the brain.
New polymer additive could revolutionize plastics recycling
Only 2 percent of the 78 million tons of manufactured plastics are currently recycled into similar products because polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and cannot be efficiently repurposed together.
More Recycling News and Recycling Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.