New technique prepares 2D perovskite single crystals for highest photodetectivity

May 15, 2019

A research group led by Prof. LIU Shengzhong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences and Dr. XU Zhuo at Shaanxi Normal University (SNNU) developed a technique to prepare large size 2D perovskite single crystals to achieve highest photodetector performance among this type. Their findings were published in Matter.

Due to their promising stability and excellent optoelectronic properties, two-dimensional (2D) layered organic-inorganic hybrid perovskites have demonstrated better performance in certain applications than their three-dimensional (3D) counterparts. In particular, 2D perovskites show better performance in certain optoelectronic devices, especially ones fabricated on the (001) plane.

The scientists developed a surface tension-controlled crystallization method to prepare large 2D (C6H5C2H4NH3)2PbI4 ((PEA)2PbI4) perovskite single crystals (PSCs). Using this technique, they harvested some inch-sized 2D (PEA)2PbI4 PSCs with the largest reaching 36 mm in length, resulting in extraordinary device performance.

As predicted using the density function theory, their crystal structures show anisotropy-dependent optoelectronic performance. More specifically, the photodetectors fabricated on the (001) plane exhibit responsivity as high as 139.6 A/W, external quantum efficiency of 37719.6%, detectivity of 1.89 × 1015 cmHz1/2/W and response speed as fast as 21 micro second.

These results will provide a promising pathway for stable high-performance photodetectors and open a new avenue for commercialization of perovskite single crystals for photoelectronic applications.
The study was supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, the National University Research Fund, and the 111 Project.

Chinese Academy of Sciences Headquarters

Related Chemical Physics Articles from Brightsurf:

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.

Read More: Chemical Physics News and Chemical Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to