Nav: Home

New surface treatment could improve refrigeration efficiency

May 15, 2019

Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface. But for many industrial process it would be better if the fluids formed droplets, which could roll or fall off the surface and carry heat away with them.

Now, researchers at MIT have made significant progress in promoting droplet formation and shedding in such fluids. This approach could lead to efficiency improvements in many large-scale industrial processes including refrigeration, thus saving energy and reducing greenhouse gas emissions.

The new findings are described in the journal Joule, in a paper by graduate student Karim Khalil, professor of mechanical engineering Kripa Varanasi, professor of chemical engineering and Associate Provost Karen Gleason, and four others.

Over the years, Varanasi and his collaborators have made great progress in improving the efficiency of condensation systems that use water, such as the cooling systems used for fossil-fuel or nuclear power generation. But other kinds of fluids -- such as those used in refrigeration systems, liquification, waste heat recovery, and distillation plants, or materials such as methane in oil and gas liquifaction plants -- often have very low surface tension compared to water, meaning that it is very hard to get them to form droplets on a surface. Instead, they tend to spread out in a sheet, a property known as wetting.

But when these sheets of liquid coat a surface, they provide an insulating layer that inhibits heat transfer, and easy heat transfer is crucial to making these processes work efficiently. "If it forms a film, it becomes a barrier to heat transfer," Varanasi says. But that heat transfer is enhanced when the liquid quickly forms droplets, which then coalesce and grow and fall away under the force of gravity. Getting low-surface-tension liquids to form droplets and shed them easily has been a serious challenge.

In condensing systems that use water, the overall efficiency of the process can be around 40 percent, but with low-surface-tension fluids, the efficiency can be limited to about 20 percent. Because these processes are so widespread in industry, even a tiny improvement in that efficiency could lead to dramatic savings in fuel, and therefore in greenhouse gas emissions, Varanasi says.

By promoting droplet formation, he says, it's possible to achieve a four- to eightfold improvement in heat transfer. Because the condensation is just one part of a complex cycle, that translates into an overall efficiency improvement of about 2 percent. That may not sound like much, but in these huge industrial processes even a fraction of a percent improvement is considered a major achievement with great potential impact. "In this field, you're fighting for tenths of a percent," Khalil says.

Unlike the surface treatments Varanasi and his team have developed for other kinds of fluids, which rely on a liquid material held in place by a surface texture, in this case they were able to accomplish the fluid-repelling effect using a very thin solid coating -- less than a micron thick (one millionth of a meter). That thinness is important, to ensure that the coating itself doesn't contribute to blocking heat transfer, Khalil explains.

The coating, made of a specially formulated polymer, is deposited on the surface using a process called initiated chemical vapor deposition (iCVD), in which the coating material is vaporized and grafts onto the surface to be treated, such as a metal pipe, to form a thin coating. This process was developed at MIT by Gleason and is now widely used.

The authors optimized the iCVD process by tuning the grafting of coating molecules onto the surface, in order to minimize the pinning of condensing droplets and facilitate their easy shedding. The process could be carried out on location in industrial-scale equipment, and could be retrofitted into existing installations to provide a boost in efficiency. The process is "materials agnostic," Khalil says, and can be applied on either flat surfaces or tubing made of stainless steel, copper, titanium, or other metals commonly used in evaporative heat-transfer processes that involve these low-surface-tension fluids. "Whatever material you come up with, it tends to be scalable with this process," he adds.

The net result is that on these surfaces, condensing fluids such as liquid methane will readily form small droplets that quickly fall off the surface, making room for more to form, and in the process shedding heat from the metal to the droplets that fall away. Without the coating, the fluid would spread out over the whole surface and resist falling away, forming a kind of heat-retaining blanket. But with it, "the heat transfer improves by almost eight times," Khalil says.

One area where such coatings could play a useful role, Varanasi says, is in organic Rankine cycle systems, which are widely used for generating power from waste heat in a variety of industrial processes. "These are inherently inefficient systems," he says, "but this could make them more efficient."
-end-
The research was supported by the Shell-MIT Energy Initiative partnership.

Additional background

ARCHIVE: How slippery surfaces allow sticky pastes and gels to slide

ARCHIVE: MIT spinoff takes top honor at MassChallenge Awards

ARCHIVE: A new way to remove ice buildup without power or chemicals

ARCHIVE: New approach makes sprayed droplets hit and stick to their targets

ARCHIVE: Let it rain! New coatings make natural fabrics waterproof

Massachusetts Institute of Technology

Related Heat Transfer Articles:

What causes gene transfer to trigger T cell activation and exhaustion?
Researchers are beginning to gain a clearer understanding of how the immune system responds, in both a reactive and tolerant way, to gene therapy delivered using what has become the preferred gene delivery vector, adeno-associated viruses (AAV).
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
ORNL wins four FLC technology transfer awards
Oak Ridge National Laboratory researchers win four Federal Laboratory Consortium awards.
First movie of energy transfer in photosynthesis solves decades-old debate
Using ultrafast imaging of moving energy in photosynthesis, scientists have determined the speed of crucial processes for the first time.
Gene transfer on the fungal highway
Soil bacteria use the extensively branched, thread-like structures of fungi to move around and access new food sources.
Breakthrough in the quantum transfer of information between matter and light
From stationary to flying qubits at speeds never reached before...This feat, achieved by a team from Polytechnique Montréal and France's Centre national de la recherche scientifique, brings us a little closer to the era when information is transmitted via quantum principles.
It's not just the heat: Bad policies contributing to heat-related deaths in farmworkers
A new book by University of Colorado Denver anthropologist Sarah Horton argues that heat fatalities are likely to continue among American farmworkers without reform of immigration, labor, health-care and food safety policies.
Gene transfer shows promise for treating heart failure
Use of intracoronary gene transfer among heart failure patients resulted in increased left ventricular function beyond standard heart failure therapy, according to a study published online by JAMA Cardiology.
A new measure for wireless power transfer
A Toyohashi Tech researcher and the Anritsu Corporation have jointly developed a new measurement system to support the construction of highly efficient wireless power-transfer links.
Heat waves hit heat islands hardest
A new University of Wisconsin-Madison study details how extreme temperatures affect urban heat islands -- densely built areas where heat-retaining asphalt, brick and concrete make things hotter than their nonurban surroundings.

Related Heat Transfer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".