Nav: Home

Iceland volcano eruption in 1783-84 did not spawn extreme heat wave

May 15, 2019

An enormous volcanic eruption on Iceland in 1783-84 did not cause an extreme summer heat wave in Europe. But, as Benjamin Franklin speculated, the eruption triggered an unusually cold winter, according to a Rutgers-led study.

The study, in the Journal of Geophysical Research: Atmospheres, will help improve predictions of how the climate will respond to future high-latitude volcanic eruptions.

The eight-month eruption of the Laki volcano, beginning in June 1783, was the largest high-latitude eruption in the last 1,000 years. It injected about six times as much sulfur dioxide into the upper atmosphere as the 1883 Krakatau or 1991 Pinatubo eruptions, according to co-author Alan Robock, a Distinguished Professor in the Department of Environmental Sciences at Rutgers University-New Brunswick.

The eruption coincided with unusual weather across Europe. The summer was unusually warm with July temperatures more than 5 degrees Fahrenheit above the norm, leading to societal disruption and failed harvests. The 1783-84 European winter was up to 5 degrees colder than average.

Franklin, the U.S. ambassador to France, speculated on the causes in a 1784 paper, the first publication in English on the potential impacts of a volcanic eruption on the climate.

To determine whether Franklin and other researchers were right, the Rutgers-led team performed 80 simulations with a state-of-the-art climate model from the National Center for Atmospheric Research. The computer model included weather during the eruption and compared the ensuing climate with and without the effects of the eruption.

"It turned out, to our surprise, that the warm summer was not caused by the eruption," Robock said. "Instead, it was just natural variability in the climate system. It would have been even warmer without the eruption. The cold winter would be expected after such an eruption."The warm 1783 summer stemmed from unusually high pressure over Northern Europe that caused cold polar air to bypass the region, the study says. After the eruption, precipitation in Africa and Asia dropped substantially, causing widespread drought and famine. The eruption also increased the chances of El Niño, featuring unusually warm water in the tropical Pacific Ocean, in the next winter.

The eruption spawned a sulfuric aerosol cloud - called the "Laki haze" - that lingered over most of the Northern Hemisphere in 1783. Reports from across Europe included lower visibility and the smell of sulfur or hydrogen sulfide. The air pollution was linked to reports of headaches, respiratory issues and asthma attacks, along with acid rain damage to trees and crops, the study notes.

More than 60 percent of Iceland's livestock died within a year, and about 20 percent of the people died in a famine. Reports of increased death rates and/or respiratory disorders crisscrossed Europe.

"Understanding the causes of these climate anomalies is important not only for historical purposes, but also for understanding and predicting possible climate responses to future high-latitude volcanic eruptions," Robock said. "Our work tells us that even with a large eruption like Laki, it will be impossible to predict very local climate impacts because of the chaotic nature of the atmosphere."

Scientists continue to work on the potential impacts of volcanic eruptions on people through the Volcanic Impacts on Climate and Society project. The Laki eruption will be included in their research. Volcanic eruptions can have global climate impacts lasting several years.

The study's lead author is Brian Zambri, a former post-doctoral associate who earned his doctorate at Rutgers and is now at the Massachusetts Institute of Technology. Scientists at the National Center for Atmospheric Research and University of Cambridge contributed to the study.

Rutgers University

Related Volcanic Eruptions Articles:

Predicting eruptions using satellites and math
Volcanologists are beginning to use satellite measurements and mathematical methods to forecast eruptions and to better understand how volcanoes work, shows a new article in Frontiers in Earth Science.
'Bulges' in volcanoes could be used to predict eruptions
A team of researchers from the University of Cambridge have developed a new way of measuring the pressure inside volcanoes, and found that it can be a reliable indicator of future eruptions.
Volcanic eruptions triggered dawn of the dinosaurs
Huge pulses of volcanic activity are likely to have played a key role in triggering the end Triassic mass extinction, which set the scene for the rise and age of the dinosaurs, new Oxford University research has found.
Tracking the build-up to volcanic eruptions
ASU scientists discover that sub-millimeter zircon crystals record the flash heating of molten rock leading up to an explosive eruption 700 years ago.
Deep magma reservoirs are key to volcanic 'super-eruptions', new research suggests
Large reservoirs of magma stored deep in the Earth's crust are key to producing some of the Earth's most powerful volcanic eruptions, new research has shown.
More Volcanic Eruptions News and Volcanic Eruptions Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.