Nav: Home

Iceland volcano eruption in 1783-84 did not spawn extreme heat wave

May 15, 2019

An enormous volcanic eruption on Iceland in 1783-84 did not cause an extreme summer heat wave in Europe. But, as Benjamin Franklin speculated, the eruption triggered an unusually cold winter, according to a Rutgers-led study.

The study, in the Journal of Geophysical Research: Atmospheres, will help improve predictions of how the climate will respond to future high-latitude volcanic eruptions.

The eight-month eruption of the Laki volcano, beginning in June 1783, was the largest high-latitude eruption in the last 1,000 years. It injected about six times as much sulfur dioxide into the upper atmosphere as the 1883 Krakatau or 1991 Pinatubo eruptions, according to co-author Alan Robock, a Distinguished Professor in the Department of Environmental Sciences at Rutgers University-New Brunswick.

The eruption coincided with unusual weather across Europe. The summer was unusually warm with July temperatures more than 5 degrees Fahrenheit above the norm, leading to societal disruption and failed harvests. The 1783-84 European winter was up to 5 degrees colder than average.

Franklin, the U.S. ambassador to France, speculated on the causes in a 1784 paper, the first publication in English on the potential impacts of a volcanic eruption on the climate.

To determine whether Franklin and other researchers were right, the Rutgers-led team performed 80 simulations with a state-of-the-art climate model from the National Center for Atmospheric Research. The computer model included weather during the eruption and compared the ensuing climate with and without the effects of the eruption.

"It turned out, to our surprise, that the warm summer was not caused by the eruption," Robock said. "Instead, it was just natural variability in the climate system. It would have been even warmer without the eruption. The cold winter would be expected after such an eruption."The warm 1783 summer stemmed from unusually high pressure over Northern Europe that caused cold polar air to bypass the region, the study says. After the eruption, precipitation in Africa and Asia dropped substantially, causing widespread drought and famine. The eruption also increased the chances of El Niño, featuring unusually warm water in the tropical Pacific Ocean, in the next winter.

The eruption spawned a sulfuric aerosol cloud - called the "Laki haze" - that lingered over most of the Northern Hemisphere in 1783. Reports from across Europe included lower visibility and the smell of sulfur or hydrogen sulfide. The air pollution was linked to reports of headaches, respiratory issues and asthma attacks, along with acid rain damage to trees and crops, the study notes.

More than 60 percent of Iceland's livestock died within a year, and about 20 percent of the people died in a famine. Reports of increased death rates and/or respiratory disorders crisscrossed Europe.

"Understanding the causes of these climate anomalies is important not only for historical purposes, but also for understanding and predicting possible climate responses to future high-latitude volcanic eruptions," Robock said. "Our work tells us that even with a large eruption like Laki, it will be impossible to predict very local climate impacts because of the chaotic nature of the atmosphere."

Scientists continue to work on the potential impacts of volcanic eruptions on people through the Volcanic Impacts on Climate and Society project. The Laki eruption will be included in their research. Volcanic eruptions can have global climate impacts lasting several years.

The study's lead author is Brian Zambri, a former post-doctoral associate who earned his doctorate at Rutgers and is now at the Massachusetts Institute of Technology. Scientists at the National Center for Atmospheric Research and University of Cambridge contributed to the study.

Rutgers University

Related Volcanic Eruptions Articles:

A new tool to predict volcanic eruptions
Earth's atmosphere is made up of 78% nitrogen and 21% oxygen, a mixture that is unique in the solar system.
Oral traditions and volcanic eruptions in Australia
In Australia, the onset of human occupation (about 65,000 years?) and dispersion across the continent are the subjects of intense debate and are critical to understanding global human migration routes.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
Rare volcanic rocks lift lid on dangers of little-studied eruptions
Unusual rocks discovered on a remote mountainside have alerted scientists to the dangers posed by a little-studied type of volcano.
Revising the history of big, climate-altering volcanic eruptions
Researchers have developed a new isotopic method to analyze the recent history of large stratospheric volcanic eruptions, using 2,600 years' worth of records contained in ice cores from Antarctica. Stratospheric eruptions can launch sulfate particles more than 6 miles above Earth's surface, where they reflect sunlight and temporarily cool the planet.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
Using artificial intelligence to understand volcanic eruptions from tiny ash
Scientists led by Daigo Shoji from the Earth-Life Science Institute (Tokyo Institute of Technology) have shown that an artificial intelligence program called a Convolutional Neural Network can be trained to categorize volcanic ash particle shapes.
Repeating seismic events offer clues about Costa Rican volcanic eruptions
Repeating seismic events--events that have the same frequency content and waveform shapes--may offer a glimpse at the movement of magma and volcanic gases underneath Turrialba and Poas, two well-known active volcanoes in Costa Rica.
Detecting volcanic eruptions
Geophysicist Robin Matoza leads a case study of an eruption of Calbuco in Chile to evaluate data delivered by infrasound sensors
More Volcanic Eruptions News and Volcanic Eruptions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.