Nav: Home

Energy-free superfast computing invented by scientists using light pulses

May 15, 2019

Superfast data processing using light pulses instead of electricity has been created by scientists.

The invention uses magnets to record computer data which consume virtually zero energy, solving the dilemma of how to create faster data processing speeds without the accompanying high energy costs.

Today's data centre servers consume between 2 to 5% of global electricity consumption, producing heat which in turn requires more power to cool the servers.

The problem is so acute that Microsoft has even submerged hundreds of its data centre services in the ocean in an effort to keep them cool and cut costs.

Most data are encoded as binary information (0 or 1 respectively) through the orientation of tiny magnets, called spins, in magnetic hard-drives. The magnetic read/write head is used to set or retrieve information using electrical currents which dissipate huge amounts of energy.

Now an international team publishing in Nature has solved the problem by replacing electricity with extremely short pulses of light - the duration of one trillionth of a second - concentrated by special antennas on top of a magnet.

This new method is superfast but so energy efficient that the temperature of the magnet does not increase at all.

The team includes Dr Rostislav Mikhaylovskiy, formerly at Radboud University and now Lancaster University, Stefan Schlauderer, Dr Christoph Lange and Professor Rupert Huber from Regensburg University, Professor Alexey Kimel from Radboud University and Professor Anatoly Zvezdin from the Russian Academy of Sciences.

They demonstrated this new method by pulsing a magnet with ultrashort light bursts (the duration of a millionth of a millionth of a second) at frequencies in the far infrared, the so called terahertz spectral range.

However, even the strongest existing sources of the terahertz light did not provide strong enough pulses to switch the orientation of a magnet to date.

The breakthrough was achieved by utilizing the efficient interaction mechanism of coupling between spins and terahertz electric field, which was discovered by the same team.

The scientists then developed and fabricated a very small antenna on top of the magnet to concentrate and thereby enhance the electric field of light. This strongest local electric field was sufficient to navigate the magnetization of the magnet to its new orientation in just one trillionth of a second.

The temperature of the magnet did not increase at all as this process requires energy of only one quantum of the terahertz light - a photon - per spin.

Dr Mikhaylovskiy said: "The record-low energy loss makes this approach scalable.

Future storage devices would also exploit the excellent spatial definition of antenna structures enabling practical magnetic memories with simultaneously maximal energy efficiency and speed."

He plans to carry out further research using the new ultrafast laser at Lancaster University together with accelerators at the Cockroft Institute which are able to generate intense pulses of light to allow switching magnets and to determine the practical and fundamental speed and energy limits of magnetic recording.
-end-
URL, which will go live after the embargo ends: https://www.nature.com/articles/s41586-019-1174-7

Lancaster University

Related Electricity Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Exploring the conversion of heat to electricity in single molecules
Researchers at Osaka University investigated the influence of the geometry of single-molecule devices on their ability to produce electricity from heat.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Buzzing the brain with electricity can boost working memory
Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronize brain waves.
Environmentally friendly, almost electricity-free solar cooling
Demand and the need for cooling are growing as the effects of climate change intensify.
1 in 5 residents overuses electricity at neighbors' expense
Household electricity use falls by more than 30 percent when residents are obliged to pay for their own personal consumption.
New approach for matching production and consumption of renewable electricity
VTT Technical Research Centre of Finland is coordinating the BALANCE project, which brings together leading European research institutes in the field of electrochemical conversion.
Electricity costs: A new way they'll surge in a warming world
Climate change is likely to increase US electricity costs over the next century by billions of dollars more than economists previously forecast, according to a new study involving a University of Michigan researcher.
Material can turn sunlight, heat and movement into electricity -- all at once
Many forms of energy surround you: sunlight, the heat in your room and even your own movements.
For this metal, electricity flows, but not the heat
Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material.

Related Electricity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".