Nav: Home

New strategy of reprogramming regulatory T cells may improve cancer therapies

May 15, 2019

While therapies that harness the power of the immune system against cancer have made remarkable progress against certain types of tumors, they still remain ineffective in most cancer patients. A new study from the Center for Immunology and Inflammatory Diseases (CIID) at Massachusetts General Hospital (MGH) describes a method of reprogramming the regulatory T cells that usually suppress immune responses into inflammatory cells that not only permit but also intensify an antitumor immune response. Their paper is receiving advance online release in Nature.

"Many patients' tumors do not respond to immune therapies - such as immune checkpoint blockade - because of a lack of pre-existing inflammation that is required for those therapies to work," says Thorsten Mempel, MD, PhD, of the MGH CIID, senior author of the Nature paper. "Our study shows that reprogrammed Treg cells provide exactly the type of inflammation that is lacking. Indeed, we found in mice that reprogramming tumor-infiltrating Treg cells to secrete inflammatory cytokines makes previously unresponsive tumors highly sensitive to PD-1 blockade."

The MGH study focused on the CBM complex - a large protein cluster within immune cells that helps regulate their activation, proliferation and function. Recent research has revealed a critical role for the CBM complex in lymphocyte function, and since deleting one of three key proteins, called CARMA1, is already known to reduce the function of effector T cells, the team examined the effects of CARMA1 deletion on Treg cells.

Their experiments revealed that targeting the CBM complex - either by deleting one or both copies of the CARMA1 gene in Treg cells or by treating tumor-bearing mice with a drug that inhibits MALT1, another component of the complex - caused Treg cells to secrete the immunostimulatory cytokine interferon gamma in tumor tissue alone. The ability to selectively modulate the function of Treg in tumors can avoid the risk of autoimmune disease that would result from systemic Treg depletion.

CBM targeting led to inflammation of tumor tissue and increased infiltration by cytotoxic CD8 T cells and natural killer cells. But it only reduced the rate of tumor growth in mouse models of melanoma and colon cancer because the activity of those immune cells was still limited by the immune checkpoint protein PD-1. However, blocking the activity of PD-1 with antibodies led to elimination of tumors that had been inflamed by anti-CBM treatment.

"Treg cells are preferentially 'auto-reactive,' meaning they react to our own, 'self' tissue antigens," explains Mempel, an associate professor of Medicine at Harvard Medical School. "By reprogramming Treg cells in tumor tissue, we create a local inflammatory autoimmune reaction that primes tumors for immune therapies. So instead of trying to get rid of Treg cells, we now can use them as an asset, harnessing their self-reactivity for cancer treatment."

Mauro Di Pilato, PhD, a research fellow in Dr. Mempel's lab and lead author of the study, adds, "Now we need to assess whether this approach works as well in humans as it does in mice and understand why Treg cells in the tumor environment, but not elsewhere, are reprogrammed through targeting of the CBM complex. The ability to reprogram Treg cells to improve patient response to immune checkpoint blockade has the potential of increasing the number of patients who can be helped with that approach."
-end-
Edward Kim, PhD, MGH CIID, is co-lead author of the Nature paper. Additional co-authors are Bruno Cadilha, Jasper Prüßmann, MD, Mazen Nasrallah, MD, Shariq Usmani, PhD, Esteban Carrizosa, PhD, Vinidhra Mani, PhD, Ross Warner, Benjamin Medoff, MD, Francesco Marangoni, PhD, and Alexandra-Chloe Villani, PhD, MGH CIID; Sandra Misale, PhD, and Matteo Ligorio, MD, PhD, MGH Center for Cancer Research; Davide Seruggia, PhD, Boston Children's Hospital; and Valentina Zappulli, DVM, MSc, PhD, University of Padua, Italy. Support for the study includes EMBO fellowship grant ALTF534-2015, Marie Curie Global Fellowship 750973, Melanoma Research Alliance Senior Investigator Award MRA-348693, National Institutes of Health grant AI123349, and the Bob and Laura Reynolds MGH Research Scholar Award.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $925 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2017 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.