Yale study identifies how cancer drug inhibits DNA repair in cancer cells

May 15, 2019

New Haven, Conn. -- According to researchers at Yale Cancer Center, a cancer drug thought to be of limited use possesses a superpower of sorts: It is able to stop certain cancer cells from repairing their DNA in order to survive. The study, published today in the journal Science Translational Medicine, suggests that combining this drug, cediranib, with other agents could potentially deliver a lethal blow in cancer that uses a specific pathway -- or process -- to create DNA repair cells.

"There is a lot of interest in the cancer field in developing DNA repair inhibitors because they will greatly help treatments, like radiotherapy and chemotherapy, that aim to destroy DNA in cancer cells," said the senior author of the study at Yale Cancer Center, Peter M. Glazer, M.D., chair of the Department of Therapeutic Radiology, the Robert E. Hunter Professor of Therapeutic Radiology, and professor of genetics.

DNA repair occurs in several different ways, which is why inhibitors of these specific techniques could be so valuable, Glazer said. "People are recognizing that manipulating DNA repair could be very advantageous to boosting the benefit of traditional cancer treatment."

"The use of cediranib to help stop cancer cells from repairing damage to their DNA could potentially be useful in a number of cancers that rely on the pathway the drug targets," said the study's lead investigator, Alanna Kaplan, a member of Glazer's team. "If we could identify the cancers that depend on this pathway, we may be able to target a number of tumors."

Cediranib was developed to inhibit vascular endothelial growth factor (VEGF) receptors that stimulate the formation of blood vessels that tumors need to grow. But it has offered less benefit than the U.S. Food and Drug Administration-approved VEGF pathway inhibitor, Avastin.

However, a recent clinical trial found the combination of cediranib and olaparib (registered as Lynparza) is beneficial in a specific form of ovarian cancer. Olaparib, the first approved DNA repair drug, is known to inhibit a DNA repair enzyme called PARP and has shown promise killing cancer cells with defects in DNA repair due to mutations in the DNA repair genes BRCA1 and BRCA2.

But the combination of cediranib and olaparib was effective in ovarian cancer that did not have BRCA1/BRCA2 mutations -- leading to the launch of several clinical trials testing the drug duo in different types of cancers, including prostate and lung cancer.

Glazer and his team wanted to understand how cediranib exerted such a powerful effect.

Researchers thought cediranib worked in that clinical trial by shutting down angiogenesis, the stimulation of blood vessel growth. Blocking angiogenesis leads to low-oxygen conditions inside tumors, sometimes called hypoxia. Two decades ago, Glazer demonstrated that, among other things, low oxygen seemed to negatively affect DNA repair. In short, the researchers believed hypoxia caused by cediranib led to weak DNA repair.

But what the new study found is that while cediranib does help stop growth of new blood vessels in tumors, it has a second -- and potentially more powerful -- function. It switches off DNA repair at an early stage in the DNA repair pathway. "Unlike olaparib, it doesn't directly block a DNA repair molecule, stopping DNA from stitching itself back together. It affects the regulation by which DNA repair genes are expressed," said Glazer.

Cediranib makes tumors more sensitive to the effects of olaparib because it stops cancer cells from repairing their DNA by a mechanism called homology-directed repair (HDR). This occurs when a healthy strand of DNA is used as a template to repair the identical, but damaged, DNA strand, he added.

Cediranib's direct effect comes from inhibiting the platelet-derived growth factor receptor (PDGFR), which is involved in cell growth. The drug, therefore, works to inhibit both angiogenesis and the ability of tumors to grow by repairing mishaps in their DNA. "The capacity of the drug to harm blood vessel formation was not a surprise. But its direct effect on DNA repair through the PDGF receptor was completely unexpected," Glazer said.

"The goal now is to investigate how we can broaden the potential of this synthetic lethality to other cancer types," he said.
-end-
Other study co-authors from Yale include Susan E. Gueble, M.D., Yanfeng Liu, Sebastian Oeck, Hoon Kim, and Zhong Yun.

Funding for the study included National Cancer Institute (National Institutes of Health) grants R01ES005775, R35CA197574, R01CA178254, F30CA221065, as well as Medical Scientist Training Program Training Grant T32GM007205.

Yale University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.