Nav: Home

Neanderthals and modern humans diverged at least 800,000 years ago

May 15, 2019

Neanderthals and modern humans diverged at least 800,000 years ago, substantially earlier than indicated by most DNA-based estimates, according to new research by a UCL academic.

The research, published in Science Advances, analysed dental evolutionary rates across different hominin species, focusing on early Neanderthals. It shows that the teeth of hominins from Sima de los Huesos, Spain - ancestors of the Neanderthals - diverged from the modern human lineage earlier than previously assumed.

Sima de los Huesos is a cave site in Atapuerca Mountains, Spain, where archaeologists have recovered fossils of almost 30 people. Previous studies date the site to around 430,000 years ago (Middle Pleistocene), making it one of the oldest and largest collections of human remains discovered to date.

Dr Aida Gomez-Robles (UCL Anthropology), said: "Any divergence time between Neanderthals and modern humans younger than 800,000 years ago would have entailed an unexpectedly fast dental evolution in the early Neanderthals from Sima de los Huesos."

"There are different factors that could potentially explain these results, including strong selection to change the teeth of these hominins or their isolation from other Neanderthals found in mainland Europe. However, the simplest explanation is that the divergence between Neanderthals and modern humans was older than 800,000 years. This would make the evolutionary rates of the early Neanderthals from Sima de los Huesos roughly comparable to those found in other species."

Modern humans share a common ancestor with Neanderthals, the extinct species that were our closest prehistoric relatives. However, the details on when and how they diverged are a matter of intense debate within the anthropological community.

Ancient DNA analyses have generally indicated that both lineages diverged around 300,000 to 500,000 years ago, which has strongly influenced the interpretation of the hominin fossil record.

This divergence time, however, is not compatible with the anatomical and genetic Neanderthal similarities observed in the hominins from Sima de los Huesos. The Sima fossils are considered likely Neanderthal ancestors based on both anatomical features and DNA analysis.

Dr Gomez-Robles said: "Sima de los Huesos hominins are characterised by very small posterior teeth (premolars and molars) that show multiple similarities with classic Neanderthals. It is likely that the small and Neanderthal-looking teeth of these hominins evolved from the larger and more primitive teeth present in the last common ancestor of Neanderthals and modern humans."

Dental shape has evolved at very similar rates across all hominin species, including those with very expanded and very reduced teeth. This new study examined the time at which Neanderthals and modern humans should have diverged to make the evolutionary rate of the early Neanderthals from Sima de los Huesos similar to those observed in other hominins.

The research used quantitative data to measure the evolution of dental shape across hominin species assuming different divergent times between Neanderthals and modern humans, and accounting for the uncertainty about the evolutionary relationships between different hominin species.

"The Sima people's teeth are very different from those that we would expect to find in their last common ancestral species with modern humans, suggesting that they evolved separately over a long period of time to develop such stark differences."

The study has significant implications for the identification of Homo sapiens last common ancestral species with Neanderthals, as it allows ruling out all the groups postdating 800,000 year ago.
-end-
Notes to Editors

For more information or to speak to the researcher involved, please contact:

Natasha Downes, UCL Media Relations. T: +44 (0) 20 3108 3844 / +44 (0) 7990 675 947, E: n.downes@ucl.ac.uk

Gomez-Robles, A. Dental evolutionary rates and its implications for the Neanderthal-modern human divergence will be published in Scientific Advances.

About UCL (University College London)

UCL was founded in 1826. We were the first English university established after Oxford and Cambridge, the first to open up university education to those previously excluded from it, and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by performance in a range of international rankings and tables, and are committed to changing the world for the better.

Our community of over 41,500 students from 150 countries and over 12,500 staff pursues academic excellence, breaks boundaries and makes a positive impact on real world problems.

http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

University College London

Related Evolution Articles:

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
More Evolution News and Evolution Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.