Enhancement of bitter taste sensor reduces salt intake and improves cardiovascular dysfunction

May 15, 2020

High salt intake is a well-known risk factor of hypertension and cardiovascular diseases. Reducing salt intake can significantly lower blood pressure and ameliorate target organ damage caused by hypertension. However, in the past three decades, several strategies have failed to decrease daily salt intake to an optimal level. Therefore, it is important to identify alternative approaches for reducing excessive salt intake and antagonizing high salt-induced hypertension.

Salt taste perception is an important factor in determining salt intake at an individual level. Previous studies have shown that aversion induced by salt beyond the physiological concentration range is mediated by a bitter taste sensor-transient receptor potential channel M5 (TRPM5) in taste receptor cells. High salt stimuli might produce a bitter taste for a defensive response to reduce salt intake. Recently, Professor Zhiming Zhu's team from Army Medical University found that acute high-salt stimulation activated TRPM5-mediated bitter taste and increased aversion reaction. However, long-term high salt intake impairs the activity of the TRPM5 by inhibiting protein kinase C (PKC) activity and PKC-dependent threonine phosphorylation. "The TRPM5-mediated aversion response to high salt is weakened, which results in a progressive increase of high salt intake and increased blood pressure in mice fed with long-term high-salt-diet." Said Dr. Yuanting Cui, the first author of this work. These results were published in Hypertension recently.

On this basis, Professor Zhiming Zhu's team continued to explore how to restore TRPM5 function damage caused by long-term high salt intake. They found that long-term dietary intervention with bitter melon extract (BME) restored the TRPM5-mediated aversion to high salt stimuli in tongue epithelium, thus reduced excessive salt intake, and improved the cardiovascular damage in mice. Mechanistically, dietary BME inhibited high salt-induced RhoA/Rho kinase activation, leading to reduced phosphorylation levels of myosin light chain kinase and myosin phosphatase targeting subunit 1. Furthermore, cucurbitacin E (CuE), the major active compound in BME, also inhibited vasoconstriction by attenuating L-type Ca2+ channel-induced Ca2+ influx in vascular smooth muscle cells. "We found that BME and CuE increased TRPM5 expression and function in tongue epithelium. Therefore, the mice fed with high salt plus BME diet showed a lower salt intake, and improved the high salt-induced hypertension and cardiac hypertrophy compared with mice only fed with high-salt diet." said Dr. Hao Wu, the first author and Prof. Zhiming Zhu, the corresponding author of this work. These results were published in SCIENCE CHINA Life Sciences recently.

These encouraging results from Professor Zhu's team provide further suggestions for promoting the use of dietary factors to reduce salt consumption. Enhancing bitter taste function by dietary bitter melon might provide a promising approach for antagonizing excessive salt intake and preventing of high salt-induced cardiovascular dysfunction.
These works were supported by grants from the Natural Science Foundation of China (81721001, 81630015, 31701023) and National Key Research and Development Project (2018YFA0800601).

See the article:

[1] Cui Y, Wu H, Li Q, et al. Impairment of Bitter Taste Sensor Transient Receptor Potential Channel M5-Mediated Aversion Aggravates High-Salt Intake and Hypertension. Hypertension. 2019;74(4):1021-1032. doi:10.1161/HYPERTENSIONAHA.119.13358. This article was published online in the Hypertension

[2] Wu H, Cui Y, He C, et al. Activation of the bitter taste sensor TRPM5 prevents high salt-induced cardiovascular dysfunction. Sci China Life Sci. 2020. doi:10.1007/s11427-019-1649-9. https://dx.doi.org/10.1007/s11427-019-1649-9

Science China Press

Related Hypertension Articles from Brightsurf:

Risk of target organ damage in patients with masked hypertension versus sustained hypertension
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2019.1261, Yue Wu, Guoyue Zhang, Rong Hu and Jianlin Du from The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China consider the risk of target organ damage in patients with masked hypertension versus sustained hypertension.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Diagnosing hypertension in children
Study results call into question the utility of testing blood pressure load--the proportion of elevated blood pressure readings detected over 24 hours--for diagnosing hypertension in children.

When the best treatment for hypertension is to wait
A new study concluded that a physician's decision not to intensify hypertension treatment is often a contextually appropriate choice.

Treatment of hypertension induced albuminuria
Patients with albuminuria will usually need more than one drug to achieve blood pressure control, particularly if the aim is also to reduce albuminuria.

Diagnosing and treating resistant hypertension
Resistant blood pressure affects 12 percent to 15 percent of people currently being treated for high blood pressure.

Dementia can be caused by hypertension
A new study in Cardiovascular Research indicates that patients with high blood pressure are at a higher risk of developing dementia.

Hormone imbalance causes treatment-resistant hypertension
British researchers have discovered a hormone imbalance that explains why it is very difficult to control blood pressure in around 10 per cent of hypertension patients.

Breastfeeding reduces hypertension risk
A study published in the American Journal of Hypertension indicates that women who breastfeed more children, and for longer periods of time, are less likely to suffer from hypertension after they reach menopause.

Lung cancer triggers pulmonary hypertension
Nearly half of all advanced-stage lung cancer patients develop arterial pulmonary hypertension.

Read More: Hypertension News and Hypertension Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.