Like thunder without lightning

May 15, 2020

Mergers between black holes and neutron stars in dense star clusters are quite unlike those that form in isolated regions where stars are few. Their associated features could be crucial to the study of gravitational waves and their source. Dr Manuel Arca Sedda of the Institute for Astronomical Computing at Heidelberg University came to this conclusion in a study that used computer simulations. The research may offer critical insights into the fusion of two massive stellar objects that astronomers observed in 2019. The findings were published in the journal "Communications Physics".

Stars much more massive than our sun usually end their lives as a neutron star or black hole. Neutron stars emit regular pulses of radiation that allow their detection. In August 2017, for example, when the first double neutron star merger was observed, scientists all around the globe detected light from the explosion with their telescopes. Black holes, on the other hand, usually remain hidden because their gravitational attraction is so strong that even light cannot escape, making them invisible to electromagnetic detectors.

If two black holes merge, the event may be invisible but is nonetheless detectable from ripples in space-time in the form of so-called gravitational waves. Certain detectors, like the "Laser Interferometer Gravitational Waves Observatory" (LIGO) in the USA, are able to detect these waves. The first successful direct observation was made in 2015. The signal was generated by the fusion of two black holes. But this event may not be the only source of gravitational waves, which could also come from the merger of two neutron stars or a black hole with a neutron star. Discovering the differences is one of the major challenges in observing these events, according to Dr Arca Sedda.

In his study, the Heidelberg researcher analysed the fusion of pairs of black holes and neutron stars. He used detailed computer simulations to study the interactions between a system made up of a star and a compact object, such as a black hole, and a third massive roaming object that is required for a fusion. The results indicate that such three-body interactions can in fact contribute to black hole-neutron star mergers in dense stellar regions like globular star clusters. "A special family of dynamic mergers that is distinctly different from mergers in isolated areas can be defined", explains Manuel Arca Sedda.

The fusion of a black hole with a neutron star was first observed by gravitational wave observatories in August 2019. Yet optical observatories around the world were unable to locate an electromagnetic counterpart in the region from which the gravitational wave signal originated, suggesting that the black hole had completely devoured the neutron star without first destroying it. If confirmed, this could be the first observed black hole-neutron star merger detected in a dense stellar environment, as described by Dr Arca Sedda.
Manuel Arca Sedda is a researcher at the Institute for Astronomical Computing at the Centre for Astronomy of Heidelberg University (ZAH), where he studies the interaction between black holes and their cosmic environment, such as star clusters.

University of Heidelberg

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to