An off switch for epilepsy?

May 16, 2001

ARLINGTON, Va., May 17, 2001 --- Biomedical engineers have used a mild electric field to control seizure-like activity in brain cells. The work hints at the possibility of controlling epilepsy in a similar way.

In a recent issue of The Journal of Neuroscience, the researchers described a feedback system that monitors brain cells for seizure-like firing. When the firing begins, the system responds by applying a mild electric field, fewer than 50 millivolts per millimeter. When the erratic firing stops, the electric field shuts off.

The applied field, whose strength is determined by the feedback loop, alters the electrical charge of the overactive nerve cells, making them less responsive to the firing of neighboring cells. Exactly how this works is still unclear and being investigated.

Bruce Gluckman, Ph.D., assistant professor of physics and astronomy, and Steven Schiff, M.D., Krasnow Professor of Neurobiology, both of George Mason University, led the research group. Collaborators included Hanh Nguyen, Ph.D., of George Mason and Steven Weinstein, M.D., of Children's National Medical Center of Washington.

Their feedback system makes it possible to control the seizure-like activity automatically and over long periods. This, combined with the low electrical field requirement, has the group thinking about the long-term possibility of medical applications.

The original experiments used brain tissue from rats. Live animal testing is now getting started and human clinical trials are under discussion. A big question will be whether brain cells in the living organism will respond to the electrical field in the same way that cells do in a laboratory culture.

The normal firing of brain cells is not well understood, but the chaotic firing characteristic of seizures can be described as a nonlinear system. "The dynamic that generates the burst is much simpler than what all of the individual actors are doing," Gluckman said.

Nonlinear dynamics have proved useful in other medical applications as well, such as defibrillators that correct irregular heartbeats. Medical scientists do not understand exactly how a jolt of electricity restores a normal heartbeat, but it does.

Gluckman's feedback system may be used to investigate some of these questions. The group can change the system's electrical settings to achieve a reverse effect, so it can be used with very precise control to initiate or aggravate seizure-like activity. It can also hold a network of brain cells on the threshold of a seizure.

"Control techniques such as those presented here, especially the ability to maintain the network so close to seizure initiation, may be useful tools to probe such basic mechanisms underlying seizure generation," the group reported.

There are about 2 million epileptics in the United States, most of whom benefit from drugs that control seizures. But about 200,000 do not respond to drug therapy and have few options, one being surgery to remove parts of the brain.
The Food and Drug Administration has approved an implant that works like a heart pacemaker by providing continuous electrical stimulation to control epileptic seizures. The device is implanted under the collarbone and stimulates the vagus nerve in the neck. A majority of patients show some improvement when using the device.

Gluckman and his colleagues, however, believe that direct stimulation of the brain may ultimately prove to be more effective. Their research was supported by The Whitaker Foundation and the National Institutes of Health.

Whitaker Foundation

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to