Indiana U researchers closer to finding a genetic cause of hearing loss in aging

May 16, 2006

INDIANAPOLIS -- Researchers at Indiana University School of Medicine have taken a step toward understanding the genetics that make people more susceptible to the loss of hearing as they age.

In a study of 50 pairs of fraternal twins with hearing loss, the scientists uncovered evidence linking the hearing loss to a particular region of DNA that previously was tied to a hereditary form of progressive deafness that begins much earlier in life.

The work is believed to be the first genomic screening in search of genes associated with hearing loss using a sample of elderly people drawn from the general population. The 50 sets of twins were drawn from a group of twins who are veterans of World War II and the Korean War.

The results suggest "that this region may contain an important locus for hearing loss in the general population," said Terry E. Reed, Ph.D., professor of medical and molecular genetics at the IU School of Medicine.

The region of DNA identified by the IU study, a section of chromosome 3 named DFNA18, was implicated in a 2001 study of hereditary deafness in a large German family. It's possible the two studies are pointing to the same gene or genes, with variation in the genes resulting in differences in susceptibility to hearing loss, Dr. Reed said.
-end-
The findings, by Holly J. Garringer, a graduate student, Dr. Reed, and colleagues Nathan Pankratz, Ph.D., a fellow in the Department of Medical and Molecular Genetics, and William C. Nichols, Ph.D., of the University of Cincinnati, were reported Monday in the May issue of Archives of Otolaryngology - Head & Neck Surgery, one of the JAMA/Archives journals. The research was supported by a grant from the National Institutes of Health.

Indiana University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.