Rice physicist will search for 'quark-gluon plasma' at the LHC

May 16, 2014

HOUSTON -- (May 16, 2014) -- Rice University physicist Wei Li is searching for the smallest and hottest drop of soup in the universe, and thanks to a coveted Early Career Award from the Department of Energy (DOE), he'll have a chance to look for it beneath the Swiss Alps.

The five-year grant will fund Li's research on "quark-gluon plasma" (QGP) at Europe's Large Hadron Collider (LHC). QGP, which is sometimes called "quark soup," is a liquid of subatomic particles that only appears at temperatures above 2 trillion kelvins.

DOE's Early Career Awards support the development of individual research programs of outstanding young scientists. The awards include some of the agency's most highly sought grants. About 750 people applied for the awards this year, and only 35 were selected. Li was one of just 18 chosen from the ranks of the nation's leading research universities. The other 17 were awarded to scientists from U.S. national laboratories.

Li's research specialty lies at the intersection of nuclear physics and high-energy particle physics. The new grant will allow him and his students to search for QGP at the LHC, the world's most powerful particle accelerator. Operated by the European Organization for Nuclear Research (CERN), the LHC is the laboratory that found the long-sought Higgs particle in 2012.

"We share exactly the same hardware as the folks who discovered the Higgs boson, but we are designing software to study a different type of physics," Li said.

Physicists have used particle accelerators to smash together atoms and subatomic particles for nearly a century. By accelerating tiny bits of matter to near light speed, physicists are able to imbue them with terrific amounts of energy. When two such particles meet in a head-on collision, their combined energy gets converted -- via Einstein's famous equation E=mc2 -- into mass. The upshot is that each particle accelerator collision produces a shower of massive, short-lived subatomic particles. By watching these exotic particles decay, physicists can learn about the fundamental makeup of everything we can touch and see.

For example, experiments in particle accelerators have revealed that the protons and neutrons inside every atomic nucleus are themselves made of smaller stuff called quarks. The strongest known force in nature, which is simply called the "strong force," binds three quarks together inside each proton and neutron. The carrier for the strong force is another subatomic entity called a gluon, which constantly shuttles between tightly bound quarks.

In the late 1990s, physicists at the Brookhaven National Laboratory on Long Island began using a new kind of particle accelerator called the Relativistic Heavy Ion Collider to smash together the nuclei of massive elements like gold and lead, each of which contain dozens of protons and neutrons. The collisions between these massive nuclei, or heavy ions, are hot enough to melt protons and make QGP, a frictionless liquid soup of free quarks and gluons that last existed in nature in the microseconds after the Big Bang.

"The LHC successfully recreated QGP by colliding heavy lead nuclei in 2010," Li said. "However, most people believed that proton-proton collisions would not be able to produce QGP because although they are about 30 times more powerful than heavy ion collisions, the protons are considerably less massive than heavy ions.

"The data are still inconclusive, but the discovery of a novel phenomenon in the data from early runs of proton-proton collisions at the LHC suggests that a tiny amount of QGP may have been produced," he said. "When the LHC restarts next year, the energy of the proton beams will be about double what it was last time, and there is a chance that we can confirm that QGP is being produced."

Li said another possibility is that LHC is producing a new, previously unobserved form of matter that only looks like QGP at first glance.

"We are entering an exciting new phase of discovery at LHC," he said. "The key is knowing what events to look for and designing the proper algorithms and software to find the collisions that are producing new physics."

Li's team, which will include a postdoctoral researcher and graduate students, must design software that's capable of identifying the proton-proton collisions at the LHC that could produce smaller volumes and a fraction of the size of QGP than could be observed at the Relativistic Heavy Ion Collider. He said studies of tiny QGP droplets could provide new clues about the fundamental properties of the universe.

"We estimate that the kinds of collisions we are looking for occur once in every 1 million collisions at the LHC," Li said.

Given that some tens of millions of collisions occur each second at the LHC, and that scientists can only capture and store data for a few hundred of those, the task for Li's team is to develop a set of algorithms and software capable of snagging and saving data about QGP-producing collisions in real time.

"This would be a different way to study QGP, and it could have important implications for our understanding of the strong force between quarks and gluons," Li said.
-end-
High-resolution IMAGES are available for download at:

http://news.rice.edu/wp-content/uploads/2014/05/0515_WEILI-09-lg.jpg

CAPTION: Wei Li
CREDIT: Jeff Fitlow/Rice University

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Rice University

Related Large Hadron Collider Articles from Brightsurf:

Cosmic tango between the very small and the very large
A new study using the theory of quantum loop cosmology accounts for two major mysteries about the large-scale structure of our universe.

Profits of large pharmaceutical companies compared to other large public companies
Data from annual financial reports were used to compare the profitability of 35 large pharmaceutical companies with 357 companies in the S&P 500 Index from 2000 to 2018.

Near misses at Large Hadron Collider shed light on the onset of gluon-dominated protons
New findings from University of Kansas researchers center on work at the Large Hadron Collider to better understand the behavior of gluons.

Springer Nature publishes study for a CERN next generation circular collider
Back in January, CERN released a conceptual report outlining preliminary designs for a Future Circular Collider (FCC), which if built, would have the potential to be the most powerful particle collider the world over.

Large cells for tiny leaves
Scientists identify protein that controls leaf growth and shape.

NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.

Mini antimatter accelerator could rival the likes of the Large Hadron Collider
Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.

A domestic electron ion collider would unlock scientific mysteries of atomic nuclei
The science questions that could be answered by an electron ion collider (EIC) -- a very large-scale particle accelerator - are significant to advancing our understanding of the atomic nuclei that make up all visible matter in the universe, says a new report by the National Academies of Sciences, Engineering, and Medicine.

How large can a tsunami be in the Caribbean?
The 2004 Indian Ocean tsunami has researchers reevaluating whether a magnitude 9.0 megathrust earthquake and resulting tsunami might also be a likely risk for the Caribbean region, seismologists reported at the SSA 2018 Annual Meeting.

Meet the 'odderon': Large Hadron Collider experiment shows potential evidence of quasiparticle sought for decades
A team of high-energy experimental particle physicists, including several from the University of Kansas, has uncovered possible evidence of a subatomic quasiparticle dubbed an

Read More: Large Hadron Collider News and Large Hadron Collider Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.