Breakthrough in HIV/AIDS research gives hope for improved drug therapy

May 16, 2014

PITTSBURGH, May 16, 2014 - The first direct proof of a long-suspected cause of multiple HIV-related health complications was recently obtained by a team led by the University of Pittsburgh Center for Vaccine Research (CVR). The finding supports complementary therapies to antiretroviral drugs to significantly slow HIV progression.

The study, which will be published in the June issue of the Journal of Clinical Investigation and is available online, found that a drug commonly given to patients receiving kidney dialysis significantly diminishes the levels of bacteria that escape from the gut and reduces health complications in non-human primates infected with the simian form of HIV. The study was funded by the National Institutes of Health (NIH).

"We now have direct evidence of a major culprit in poor outcomes for some HIV-infected people, which is an important breakthrough in the fight against AIDS," said Ivona Pandrea, M.D., Ph.D., professor of pathology at Pitt's CVR. "Researchers and doctors can now better test potential therapies to slow or stop a key cause of death and heart disease in people with HIV."

Chronic activation of the immune system and inflammation are major determinants of progression of HIV infection to AIDS, and also play an important role in inducing excessive blood clotting and heart disease in HIV patients. Doctors believed this was due to microbial translocation, which occurs when bacteria in the gut gets out into the body through intestinal lining damaged by HIV. However, no direct proof of this mechanism existed.

Dr. Pandrea and her colleagues showed blocking the bacteria from leaving the intestine reduces the chronic immune activation and inflammation. They did this by giving the drug Sevelamer, also known by the brand names Renvela and Renagel, to monkeys newly infected with simian immunodeficiency virus, or SIV, the primate-form of HIV.

Sevelamer is an oral drug approved by the U.S. Food and Drug Administration to treat elevated levels of phosphate in the blood of patients with chronic kidney disease.

The gut bacteria bind to Sevelamer, making it much more difficult for the bacteria to escape into the body and cause serious problems, such as heart disease, while further weakening the immune system and allowing HIV to progress to full-blown AIDS.

In SIV-infected monkeys treated with Sevelamer, levels of a protein that indicates microbial translocation remained low. However, in the untreated monkeys the levels increased nearly four-fold a week after SIV infection.

The treated monkeys with the lower rates of microbial translocation also had lower levels of a biomarker associated with excessive blood clotting, showing that heart attacks and stroke in HIV patients are more likely associated with chronic immune system activation and inflammation, rather than HIV drugs.

"These findings clearly demonstrate that stopping bacteria from leaving the gut reduces the rates of many HIV comorbidities," said Dr. Pandrea.

Because most interventions in people infected with HIV begin after the person has reached chronic stages of infection when the gut is already severely damaged, Dr. Pandrea notes, "These treatments may not be as effective later in the infection. Clinical trials in HIV-infected patients were not yet successful in reducing microbial translocation in chronically infected patients. Our study points to the importance of early and sustained drug treatment in people infected with HIV."

Other approaches, such as coupling Sevelamer with antibiotics, anti-inflammatory drugs, probiotics or supplementation of existing HIV/AIDS drugs could further reduce the likelihood of microbial translocation. Clinical trials are underway to assess these strategies.
-end-
Additional researchers on this study are Jan Kristoff, B.A., M.S., George Haret-Richter, Ph.D., Dongzhu Ma, Ph.D., Cuiling Xu, Ph.D., Jennifer L. Stock, B.S., Tianyu He, B.S., Adam D. Mobley, B.S., Samantha Ross, B.A., M.S., Anita Trichel, D.V.M., Ph.D., Cristian Apetrei, M.D. Ph.D., all of Pitt; Alan Landay, Ph.D., Rush University; Ruy M. Ribeiro, Ph.D., Los Alamos National Laboratory; Elaine Cornell, technician, and Russell Tracy, Ph.D., both of the University of Vermont; and Cara Wilson, M.D., of the University of Colorado.

This work was supported by NIH grants R01 HL117715, R01 RR025781, 5P01 AI076174 and P30 AI082151.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu. http://www.upmc.com/mediaContact:

Allison Hydzik
Phone: 412-647-9975
E-mail: HydzikAM@upmc.edu

Contact:

Wendy Zellner
Phone: 412-586-9771
E-mail: ZellnerWL@upmc.edu

University of Pittsburgh Schools of the Health Sciences

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.