UT Arlington particle physics team awarded $2.5 million grant, 25 percent funding increase

May 16, 2014

Physicists from UT Arlington who have traveled the world to support new scientific discoveries, including the widely publicized Higgs boson, have been awarded a $2.5 million, three-year Department of Energy grant to further their work.

The funding, which begins this month, represents a 25 percent increase from previous Energy Department base award grants to the College of Science's Center of Excellence in High Energy Physics - a hearty recognition of the innovative ideas and research under way at The University of Texas at Arlington.

"Our professors and students are known internationally for their expertise in the field of high energy physics, and this grant award is a strong endorsement," said UT Arlington President Vistasp Karbhari. "Whether it is working at the Large Hadron Collider in Switzerland, processing huge volumes of data at our supercomputing center or inspiring tomorrow's scientific leaders in the classroom, they are contributing greatly to our very understanding of the natural laws that govern our world.

"This award will ensure that the work they have been doing will continue to thrive," he said.

Kaushik De, director of the UT Arlington Center of Excellence in High Energy Physics, said news of the increased funding came after university programs across the U.S. and individual researchers in them were required to undergo an extensive comparative review by federal officials. The purpose was to identify research proposals with the highest "scientific merit, impact and potential."

Other members of the UT Arlington group funded in this proposal include Professors Andrew White, Andrew Brandt, Jaehoon Yu and Associate Professor Amir Farbin. The Department of Energy also funds Farbin through its prestigious Early Career Research Program, aimed at supporting "outstanding scientists early in their careers".

"Undergoing the review and preparing our proposal for future research took years of strategic planning, but the result is extraordinary. This is indeed a special achievement by our faculty and a good sign for the future of high energy physics at UT Arlington," De said.

Proposals to the Energy Department's High Energy Physics program for fiscal year 2014 had an overall 48 percent success rate, according to figures presented at a recent advisory panel meeting for High Energy Physics held in the Washington, D.C. area. During the review process, about 81 percent of previously funded groups received research support.

For almost two decades, UT Arlington physicists have been part of the ATLAS group, one of two research groups at the Large Hadron Collider, or LHC, and the DZero experiment and the flagship Long Baseline Neutrino Experiment (LBNE) at the Fermilab Tevatron near Chicago.

The LHC is a massive particle accelerator built 100 meters underground near Geneva. There, scientists collide proton beams to scatter particles, simulate Big Bang conditions and learn more about the origins of the universe and matter. The complementary Fermilab program is preparing an extremely high intensity proton beam to explore rare neutrinos and to search for low mass dark matter.

Besides explaining the interaction among subatomic particles such as protons, muons, quarks and others in the Physics Standard Model, particle research has also led to high-tech advances in the area of medical screenings, drug manufacturing, cancer treatment, Big Data and homeland security.

Parts of the LHC detector system were built at UT Arlington and shipped from North Texas. De, the leader of the UT Arlington ATLAS group, is also the co-developer of PanDA, a workload management software system built to process huge volumes of data from LHC. UT Arlington hosts a large supercomputing center called the SouthWest Tier II center to process ATLAS data.

Along with other collaborators, UT Arlington scientists were part of the joint research team that worked on the search for the Higgs boson or "God particle." The elusive particle first described in 1964 is thought to give mass to the universe. It was first observed at the LHC in 2012, which led to the 2013 Nobel Prize in Physics for Peter Higgs and François Englert.

Together, members of the high energy physics center at UT Arlington have garnered more than $20 million in research for their various projects over the past 10 years. The largest portion of the new award - about $1.8 million - will fund the continuation of UT Arlington's work at the ATLAS experiment, including an effort by Brandt to provide further measurements of the recently discovered Higgs.

Other areas of funding include:
-end-
About UT Arlington

The University of Texas at Arlington is a comprehensive research institution and the second largest institution in The University of Texas System. The Chronicle of Higher Education ranked UT Arlington as the seventh fastest-growing public research university in 2013. U.S. News & World Report ranks UT Arlington fifth in the nation for undergraduate diversity. Visit http://www.uta.edu to learn more and follow #UTAdna.

University of Texas at Arlington

Related Higgs Boson Articles from Brightsurf:

Through the nanoscale looking glass -- determining boson peak frequency in ultra-thin alumina
'Mysterious' vibrational properties of nanoscale glasses studied by subjecting novel (and slightly explosive) particles of aluminium wrapped in a thin alumina skin to neutron spectroscopy measurement at ANSTO.

In search of the Z boson
At the Japanese High-energy Accelerator Research Organization, KEK, in Tsukuba, about 50 kilometers north of Tokyo, the Belle II experiment has been in operation for about one year now.

Belle II yields first results in search of the Z' boson
The Belle II experiment started about one year ago. Physical Review Letters has now published the initial results of the detector.

Electrically charged higgs versus physicists: 1-0 until break
The last missing particle of the Standard Model, the Higgs boson, was discovered in 2012 in the experiments at the Large Hadron Collider.

On the trail of the Higgs Boson
In a quest to understand the production mechanisms for the Higgs Boson, Silvia Biondi from the National Institute of Nuclear Physics, Bologna, Italy investigated the traces of a rare process, called ttH, in which the Higgs Boson is produced in association with a pair of elementary particles referred to as top quarks.

New finding of particle physics may help to explain the absence of antimatter
With the help of computer simulations, particle physics researchers may be able to explain why there is more matter than antimatter in the Universe.

NYU Physicists develop new techniques to enhance data analysis for large hadron collider
NYU physicists have created new techniques that deploy machine learning as a means to significantly improve data analysis for the Large Hadron Collider (LHC), the world's most powerful particle accelerator.

SMU physicist explains the latest Higgs boson announcement in layman's terms
The discovery of the Higgs boson transforming as it decays into bottom quarks is a big step forward in the quest to understand how the Higgs particle enables fundamental particles to acquire mass.

Higgs particle's favorite 'daughter' comes home
In a finding that caps years of exploration into the tiny particle known as the Higgs boson, researchers have traced the fifth and most prominent way that the particle decays into other particles.

Researchers detect Higgs boson coupling with top quark
Detection of Higgs-top quark interaction at LHC by CMS and Atlas international collaborations, with Brazilian researchers participating, confirms theoretical predictions of Standard Model of particle physics.

Read More: Higgs Boson News and Higgs Boson Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.