Nav: Home

HIV vaccine design should adapt as HIV virus mutates

May 16, 2016

BIRMINGHAM, Ala. - Human immunodeficiency virus is known to be a highly variable virus that adapts to a person's immune response during the lifetime infection, and a new study published in Nature Medicine shows that viral adaptation in HIV can predict a person's current disease status, as well as the degree to which newly transmitted HIV-1 is adapted to their new host.

By using a novel method to measure the extent of adaptation of a virus to a person's cellular immune response, the investigators were able to predict how rapidly the disease will progress in that person.

The cellular arm of the immune response, through CD8+ T-cells, eliminates HIV-infected cells. These T-cells are activated by pieces of the virus, peptide epitopes, presented on the human leukocyte antigen proteins on the surface of antigen-presenting cells. HLA is a cell surface protein that is one of the most polymorphic variable parts of the human genome, as unique as each person's DNA.

Some spontaneous mutations in HIV change the epitopes, the antigens to which a T-cell binds, so that the HLA proteins no longer present them effectively, and no longer stimulate an immune response. This process of viral adaptation is constantly occurring, and some adaptations persist even after sequential transmissions to new individuals.

An international team, led by scientists from Microsoft Research, the University of Alabama at Birmingham and Emory University, uses a model to quantify viral adaptation, showing that being infected by a virus highly adapted to their immune response is highly detrimental to that individual.

"Individuals who had the bad luck of being infected by a pre-adapted virus progressed three times faster to low CD4 counts and had much higher viral loads," said Jonathan Carlson, Ph.D., senior researcher at Microsoft Research.

The researchers show that epitopes that are adapted are poorly recognized by the immune system when they are transmitted to individuals, and even when the adapted epitope is recognized, the immune response is much less effective at killing infected cells.

In this way, parts of the virus that would normally trigger an immune response are invisible to key components of the immune system, suggesting that universal holes exist in the immune response.

"If we can't get functional responses to those adapted epitopes in the context of natural infection, it will be quite the challenge to get responses induced by a vaccine candidate," said Dr. Eric Hunter, professor of pathology at Emory University.

An analysis of immune responses measured in the Step HIV vaccine trial showed that the more adapted the vaccine candidate, the poorer the response.

"As vaccines are developed for prevention of HIV, it is important to think about how we are designing it," said Paul Goepfert, M.D., director of UAB's Alabama Vaccine Research Clinic. "To get the immune system to respond to the vaccine, you have to think about its response to the adapted form of HIV, and focus on those parts of the virus that are most difficult to undergo adaptation."

"The ideal vaccine would produce antibodies and cell-mediated responses," Goepfert said. "We haven't optimized vaccines to be nonadapted to see if they would improve efficacy."

While the number of infections seen within the United States has decreased over the past 10 years, there are still more than 50,000 new infections each year. Effective therapy to treat HIV has been available for almost 20 years, but developing better prevention methods is essential in decreasing or ending the number of cases of infection.
-end-
This study was a collaborative effort, involving an international team of scientists. Led by Carlson, Hunter and Goepfert, the project included data from more than 4,000 HIV infection subjects, and involved investigators from IAVI, Oxford University, Simon Fraser University, the University of Kwazulu Natal, the Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard, Murdoch University, the British Columbia Centre for Excellence in HIV/AIDS, Gilead Sciences, the Zambia-Emory HIV Research program, and the La Jolla Institute of Allergy and Immunology. The team has released their machine learning models to the community at http://phylod.research.microsoft.com.

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is the state of Alabama's largest employer and an internationally renowned research university and academic medical center; its professional schools and specialty patient-care programs are consistently ranked among the nation's top 50. UAB's Center for Clinical and Translational Science is advancing innovative discoveries for better health as a two-time recipient of the prestigious Center for Translational Science Award. Find more information at http://www.uab.edu and http://www.uabmedicine.org.

EDITOR'S NOTE: The University of Alabama at Birmingham is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all subsequent references.

VIDEO:http://www.youtube.com/uabnewsTEXT:http://www.uab.edu/newsTWEETS:http://www.twitter.com/uabnews

University of Alabama at Birmingham

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.