Nav: Home

Swirling swarms of bacteria offer insights on turbulence

May 16, 2017

In the bacterial world, as in the larger one, beauty can be fleeting. When swimming together with just the right amount of vigor, masses of bacterial cells produce whirling, hypnotic patterns. Too much vigor, however, and they descend into chaotic turbulence.

A team of physicists led by Rockefeller University fellow Tyler Shendruk recently detected a telling mathematical signature inscribed in that disintegration from order to chaos. Their discovery, described May 16 in Nature Communications, provides the first concrete link between turbulence in a biological system and within the larger physical world, where it is best known for buffeting planes and boats.

A fluid that moves itself

In physical systems, turbulence emerges when the smooth flow of a liquid or gas is disrupted, producing unpredictable swirls like those in billowing smoke, foaming surf, and a stomach-dropping flight. Try as they might, scientists still cannot predict precisely how smoke, water, air, or any other substance will move about during turbulence.

Something similar appears to happen within certain biological systems. Recently, scientists have discovered a turbulence-like dynamic emerging from what they call active fluids, such as a dense mass of swimming bacteria or a collection of movement-generating proteins suspended in liquid. Unlike a drop of water, these active fluids move on their own power. The biological turbulence they generate therefore differs in some significant ways from the physical phenomenon, and the relationship between these two types of turbulence remains controversial and poorly understood.

Shendruk's recent discovery bridges the two by showing that as it emerges and propagates, turbulence follows the same pattern in masses of swimming bacteria as it does in air, water, or any other physical system.

Descent into chaos

In research that began with Julia Yeomans at the University of Oxford, Shendruk and his colleagues created a computer simulation of bacteria swimming with increasing vigor within a confined channel.

In their models, once bacterial activity reaches a certain point, a rhythmic pattern emerges with alternating clockwise and counterclockwise vortices. But as the swimming becomes even more vigorous, the pattern begins to break down. Turbulence first emerges as puffs that briefly disrupt the pattern, then die away.

When Shendruk and his colleagues took a close look at how the puffs propagated, they found that once these irregularities emerged, they branched out unpredictably, sometimes dying, sometimes continuing on to split again.

These branches ultimately formed paths that resembled the movement of hot water through coffee grounds. Like the percolating water, the puffs must continually split for turbulence to spread and eventually overtake the orderly swirls.

Coffee percolation is a familiar metaphor for physicists, one that is used to describe how physical turbulence behaves as it spreads. By identifying the same progression from order to disorder among the swimming bacteria, Shendruk and his colleagues effectively bridged the divide between the turbulence of active fluids and that seen elsewhere in the world.

"By linking the physical and biological phenomena, this discovery broadens the family of phenomena considered to be turbulence," Shendruk says. "This connection may help us better understand turbulence itself, as well as the dynamics within these bacterial flows."
-end-


Rockefeller University

Related Turbulence Articles:

Computer models show clear advantages in new types of wind turbines
Researchers from Aarhus University and Durham University have modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations.
Turbulence meets a shock
Interaction of shocks and turbulence investigated with a focus on high intensity turbulence levels.
Supercomputers use graphics processors to solve longstanding turbulence question
Advanced simulations have solved a problem in turbulent fluid flow that could lead to more efficient turbines and engines.
Researchers verify 70-year-old theory of turbulence in fluids
Pilots and air travellers know turbulence can be powerful, but science has struggled to fully explain the phenomenon.
EPFL researchers crack an enduring physics enigma
Researchers from EPFL have found the mechanism that lies behind a mysterious physics phenomenon in fluid mechanics: the fact that turbulence in fluids spontaneously self-organizes into parallel patterns of oblique turbulent bands -- an example of order emerging spontaneously from chaos.
New findings reveal the behavior of turbulence in the exceptionally hot solar corona
Astrophysicists are keen to learn why the corona is so hot.
Taming turbulence: Seeking to make complex simulations a breeze
Previously intractable problems for designing fusion experiments, improving weather models, and understanding astrophysical phenomena such as star formation will be more easily addressed without the need for expensive supercomputers using a new model identified at the University of Wisconsin-Madison.
Factors affecting turbulence scaling
Fluids exhibiting scaling behavior can be found in diverse physical phenomena, observed when these fluids reach a critical point.
Army scientists create new technique for modeling turbulence in the atmosphere
Army researchers have designed a computer model that more effectively calculates the behavior of atmospheric turbulence in complex environments, including cities, forests, deserts and mountainous regions.
Turbulence is good for the blood
Scientists at Kyoto University have used induced pluripotent stem cells to make platelets at numbers (> 100 billion) that can be used in the clinic.
More Turbulence News and Turbulence Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.