Nav: Home

Swirling swarms of bacteria offer insights on turbulence

May 16, 2017

In the bacterial world, as in the larger one, beauty can be fleeting. When swimming together with just the right amount of vigor, masses of bacterial cells produce whirling, hypnotic patterns. Too much vigor, however, and they descend into chaotic turbulence.

A team of physicists led by Rockefeller University fellow Tyler Shendruk recently detected a telling mathematical signature inscribed in that disintegration from order to chaos. Their discovery, described May 16 in Nature Communications, provides the first concrete link between turbulence in a biological system and within the larger physical world, where it is best known for buffeting planes and boats.

A fluid that moves itself

In physical systems, turbulence emerges when the smooth flow of a liquid or gas is disrupted, producing unpredictable swirls like those in billowing smoke, foaming surf, and a stomach-dropping flight. Try as they might, scientists still cannot predict precisely how smoke, water, air, or any other substance will move about during turbulence.

Something similar appears to happen within certain biological systems. Recently, scientists have discovered a turbulence-like dynamic emerging from what they call active fluids, such as a dense mass of swimming bacteria or a collection of movement-generating proteins suspended in liquid. Unlike a drop of water, these active fluids move on their own power. The biological turbulence they generate therefore differs in some significant ways from the physical phenomenon, and the relationship between these two types of turbulence remains controversial and poorly understood.

Shendruk's recent discovery bridges the two by showing that as it emerges and propagates, turbulence follows the same pattern in masses of swimming bacteria as it does in air, water, or any other physical system.

Descent into chaos

In research that began with Julia Yeomans at the University of Oxford, Shendruk and his colleagues created a computer simulation of bacteria swimming with increasing vigor within a confined channel.

In their models, once bacterial activity reaches a certain point, a rhythmic pattern emerges with alternating clockwise and counterclockwise vortices. But as the swimming becomes even more vigorous, the pattern begins to break down. Turbulence first emerges as puffs that briefly disrupt the pattern, then die away.

When Shendruk and his colleagues took a close look at how the puffs propagated, they found that once these irregularities emerged, they branched out unpredictably, sometimes dying, sometimes continuing on to split again.

These branches ultimately formed paths that resembled the movement of hot water through coffee grounds. Like the percolating water, the puffs must continually split for turbulence to spread and eventually overtake the orderly swirls.

Coffee percolation is a familiar metaphor for physicists, one that is used to describe how physical turbulence behaves as it spreads. By identifying the same progression from order to disorder among the swimming bacteria, Shendruk and his colleagues effectively bridged the divide between the turbulence of active fluids and that seen elsewhere in the world.

"By linking the physical and biological phenomena, this discovery broadens the family of phenomena considered to be turbulence," Shendruk says. "This connection may help us better understand turbulence itself, as well as the dynamics within these bacterial flows."
-end-


Rockefeller University

Related Turbulence Articles:

Return of the Blob: Surprise link found to edge turbulence in fusion plasma
Correlation discovered between magnetic turbulence in fusion plasmas and troublesome blobs at the plasma edge.
Researchers unveil the universal properties of active turbulence
Turbulent flows are chaotic yet feature universal statistical properties.Over the recent years, seemingly turbulent flows have been discovered in active fluids such as bacterial suspensions, epithelial cell monolayers, and mixtures of biopolymers and molecular motors.
Unraveling turbulence
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) may have identified a fundamental mechanism by which turbulence develops by smashing vortex rings head-on into each other, recording the results with ultra-high-resolution cameras, and reconstructing the collision dynamics using a 3D visualization program.
No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.
Researchers develop first mathematical proof for key law of turbulence in fluid mechanics
Turbulence is one of the least understood phenomena of the physical world.
A new parallel strategy for tackling turbulence on Summit
A Georgia Tech team developed an algorithm for simulating turbulence on Summit, the world's most powerful and smartest supercomputer.
Turbulence creates ice in clouds
Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature.
Turbulence meets a shock
Interaction of shocks and turbulence investigated with a focus on high intensity turbulence levels.
Supercomputers use graphics processors to solve longstanding turbulence question
Advanced simulations have solved a problem in turbulent fluid flow that could lead to more efficient turbines and engines.
Researchers verify 70-year-old theory of turbulence in fluids
Pilots and air travellers know turbulence can be powerful, but science has struggled to fully explain the phenomenon.
More Turbulence News and Turbulence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.