Nav: Home

Energy decay in graphene resonators

May 16, 2017

Energy dissipation is a key ingredient in understanding many physical phenomena in thermodynamics, photonics, chemical reactions, nuclear fission, photon emissions, or even electronic circuits, among others.

In a vibrating system, the energy dissipation is quantified by the quality factor. If the quality factor of the resonator is high, the mechanical energy will dissipate at a very low rate, and therefore the resonator will be extremely accurate at measuring or sensing objects thus enabling these systems to become very sensitive mass and force sensors, as well as exciting quantum systems.

Take, for example, a guitar string and make it vibrate. The vibration created in the string resonates in the body of the guitar. Because the vibrations of the body are strongly coupled to the surrounding air, the energy of the string vibration will dissipate more efficiently into the environment bath, increasing the volume of the sound. The decay is well known to be linear, as it does not depend on the vibrational amplitude.

Now, take the guitar string and shrink it down to nano-meter dimensions to obtain a nano-mechanical resonator. In these nano systems, energy dissipation has been observed to depend on the amplitude of the vibration, described as a non-linear phenomenon, and so far no proposed theory has been proven to correctly describe this dissipation process.

In a recent study, published in Nature Nanotechnology, ICFO researchers Johannes Güttinger, Adrien Noury, Peter Weber, Camille Lagoin, Joel Moser, led by Prof. at ICFO Adrian Bachtold, in collaboration with researchers from Chalmers University of Technology and ETH Zurich, have found an explanation of the non-linear dissipation process using a nano-mechanical resonator based on multilayer graphene.

In their work, the team of researchers used a graphene based nano-mechanical resonator, well suited for observing nonlinear effects in energy decay processes, and measured it with a superconducting microwave cavity. Such a system is capable of detecting the mechanical vibrations in a very short period of time as well as being sensitive enough to detect minimum displacements and over a very broad range of vibrational amplitudes.

The team took the system, forced it out-of-equilibrium using a driving force, and subsequently switched the force off to measure the vibrational amplitude as the energy of the system decayed. They carried out over 1000 measurements for every energy decay trace and were able to observe that as the energy of a vibrational mode decays, the rate of decay reaches a point where it changes abruptly to a lower value. The larger energy decay at high amplitude vibrations can be explained by a model where the measured vibration mode "hybridizes" with another mode of the system and they decay in unison. This is equivalent to the coupling of the guitar string to the body although the coupling is nonlinear in the case of the graphene nano resonator. As the vibrational amplitude decreases, the rate suddenly changes and the modes become decoupled, resulting in comparatively low decay rates, thus in very giant quality factors exceeding 1 million. This abrupt change in the decay has never been predicted or measured until now.

Therefore, the results achieved in this study have shown that nonlinear effects in graphene nano-mechanical resonators reveal a hybridization effect at high energies that, if controlled, could open up new possibilities to manipulate vibrational states, engineer hybrid states with mechanical modes at completely different frequencies, and to study the collective motion of highly tunable systems.
Link to the paper:

About ICFO:

ICFO - The Institute of Photonic Sciences, member of The Barcelona Institute of Science and Technology, is a research center located in a specially designed, 14.000 m2-building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona. It currently hosts 400 people, including research group leaders, post-doctoral researchers, PhD students, research engineers, and staff. ICFOnians are organized in 27 research groups working in 60 state-of-the-art research laboratories, equipped with the latest experimental facilities and supported by a range of cutting-edge facilities for nanofabrication, characterization, imaging and engineering.

The Severo Ochoa distinction awarded by the Ministry of Science and Innovation, as well as 14 ICREA Professorships, 25 European Research Council grants and 6 Fundació Cellex Barcelona Nest Fellowships, demonstrate the centre's dedication to research excellence, as does the institute's consistent appearance in top worldwide positions in international rankings. From an industrial standpoint, ICFO participates actively in the European Technological Platform Photonics21 and is also very proactive in fostering entrepreneurial activities and spin-off creation. The center participates in incubator activities and seeks to attract venture capital investment. ICFO hosts an active Corporate Liaison Program that aims at creating collaborations and links between industry and ICFO researchers. To date, ICFO has created 5 successful start-up companies.

ICFO-The Institute of Photonic Sciences

Related Energy Articles:

Quantum vacuum: Less than zero energy
According to quantum physics, energy can be 'borrowed' -- at least for some time.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
Putting that free energy around you to good use with minuscule energy harvesters
Scientists at Tokyo Tech developed a micro-electromechanical energy harvester that allows for more flexibility in design, which is crucial for future IoT applications.
A new way to transfer energy between cells
Researchers have described a new method for the transmission of electrons between proteins that refutes the evidence from experiments until now.
Renewable energy cooperatives, an opportunity for energy transition
Three researchers from the UPV/EHU's Faculty of Engineering -- Bilbao and the University of Valladolid have explored how renewable energy cooperatives have evolved.
MIT Energy Initiative study reports on the future of nuclear energy
In new MIT report, study authors analyze the reasons for the current global stall of nuclear energy capacity and discuss measures that could be taken to arrest and reverse that trend.
Wave energy converters are not geared towards the increase in energy over the last century
Wave energy converters are designed to generate the maximum energy possible in their location and take a typical year in the location as a reference.
More Energy News and Energy Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at