Nav: Home

Interaction between the atomic nucleus and the electron on trial

May 16, 2017

For the first time, a team of researchers under the leadership of TU Darmstadt and with the participation of scientists from the Physikalisch-Technische Bundesanstalt (PTB) has succeeded in measuring the transition between energy levels of the lithium-like ions of bismuth with such precision that it has become possible to reassess underlying theories. This has led to a surprising result. The scientists have now published this result in "Nature Communications": the understanding of the interaction between an electron and an atomic nucleus that we have had until now might be erroneous.

At the surface of the nuclei of bismuth atoms, magnetic fields exist which are otherwise only present at the surface of massive neutron stars. The behavior of electrons in these fields has been investigated by a group of researchers under the leadership of the Technische Universität Darmstadt. Only recently have they achieved a breakthrough by observing for the first time a special transition in lithium-like ions of this element. They have now succeeded in measuring this transition at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt with such precision that it was possible for the first time to reassess the underlying theory convincingly. In the latest issue of the specialist journal "Nature Communications", the scientists give an account of their surprising result: the discrepancy between the theory and the experiment is striking. It suggests an error in our understanding of how an electron interacts with the complex inner structure of a nucleus.

Simple atoms consisting of a single nucleus and one or a few electrons are ideal systems to check our understanding of the underlying physical forces at stake. We have a better grasp of the theory of the atom's electron shell based on quantum electrodynamics (QED) than of the actual structure of the atomic nucleus. QED allows the properties of the electrons and the states in which the atom can exist to be calculated with great accuracy. These calculations are then checked by means of precision measurements. To date, QED has passed all these tests with flying colors. When using heavy nuclei, the scientists are mainly interested in the influence of the gigantic electric and magnetic fields on the electrons bound in the shell. Only very few experimental verifications of this theory have been carried out under these extreme conditions, and they do not - by far - exhibit the same accuracy as the experiments performed with light nuclei. The strong fields make the theoretical calculations much more difficult. In addition, the complex inner structure of the nuclei is not know with sufficient precision although it has a strong influence on the atomic shell. In order to by-pass this difficulty, theoreticians calculate certain differences for systems with different numbers of electrons, but with the same atomic nucleus. These so-called "specific differences" are of such a nature that the contributions of the nucleus' structure should eliminate themselves almost exactly and that they can be used by the researchers as a starting point to check the QED calculations with more precision. The results that have now been published, however, seem to question the concept of specific difference.

In its experiment, the team first generated hydrogen-like and lithium-like bismuth ions. These ions were injected into the experimental storage ring (ESR) which has a circumference of 108 m and is equipped with two straight sections where experiments can be carried out. In one of those sections, an electron beam of defined energy is superimposed with the ion beam. After a few seconds, the ions' speed adjusts to that of the electrons. In this section, a pulsed laser beam is, in addition, superimposed with the ion beam. The laser's wavelength is then modified in tiny increments. When the laser reaches exactly the wavelength of the transition of the ion to be investigated, the ions absorb light particles (photons) - and thus energy - from the laser beam. Ions that are excited in this way release this energy after a short while, thereby emitting a very small number of photons. This small number of photons was efficiently detected by means of a special mirror and single-photon detection system which was developed at the University of Münster. Due to the high speed, the wavelength of the laser is compressed or stretched by a factor of approx. 2.4, for a counterpropagating or a copropagating laser, respectively. This factor depends on the accelerating voltage of the electrons. To measure this high voltage of approx. 214,000 volts with an accuracy on the order of 1 V, a high-voltage divider developed at PTB in Braunschweig was used. Scientists from TU Darmstadt were responsible, among other things for the data acquisition and the time-dependent synchronization of the laser pulses, which only last a few billionths of a second (nanoseconds) with the revolution of the ions inside the storage ring. They also analyzed the data.

The specific difference in the transition wavelengths measured in hydrogen-like and lithium-like bismuth does not agree with the theoretical prediction, even when taking all known sources of systematic errors into consideration. The cause for this deviation is not known yet and is to be investigated within the scope of further measurements with other isotopes of bismuth. These isotopes are, however, radioactive and must therefore be produced before being injected into the storage ring. These possibilities are available at the GSI Helmholtzzentrum. The new accelerator facility, FAIR, whose construction in Darmstadt will soon begin, will provide new possibilities for further investigations of this subject.
The results published in "Nature Communications" are based on a cooperation project between the Westfälische Wilhelms-Universität Münster, PTB Braunschweig, the Johannes-Gutenberg-Universität Mainz, the GSI Helmholtzzentrum Darmstadt für Schwerionenforschung, and the Helmholtz-Institut Jena as well as other institutions under the leadership of the Institut für Kernphysik (Institute of Nuclear Physics) of the Technische Universität Darmstadt.

The publication

"High precision hyperfine measurements in bismuth challenge bound-state strong-field QED",


TU Darmstadt

Department of Physics
Prof. Dr. Wilfried Nörtershäuser
Phone: +49 (0)6151 16-23575

Dr. Johann Meisner
Working Group 2.32 "High-voltage Metrology"
Phone: +49 (0)531 592-2320

Physikalisch-Technische Bundesanstalt (PTB)

Related Magnetic Fields Articles:

Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
Ultracold gases in time-dependent magnetic fields
Zk Noor Nabi from Zhejiang University, China and co-workers from the Indian Institute of Technology studied the phase transition between the Mott insulating (MI) and superfluid (SF) states of an ultracold gas in a time-dependent magnetic field.
Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
The FASEB Journal: Magnetic fields enhance bone remodeling
Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling.
Tangled magnetic fields power cosmic particle accelerators
Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at