Nav: Home

Stiffer soles are making life more comfortable for some diabetic patients

May 16, 2017

There isn't a one-size-fits-all approach when choosing the right footwear or inner sole to take away pressure from diabetic patients' feet. The body mass index (BMI) of diabetics indicates how stiff or soft the cushioning material in shoes should be. In an article in Springer's journal Annals of Biomedical Engineering, research led by Panagiotis Chatzistergos of Staffordshire University in the UK provides the first scientific evidence to help healthcare professionals provide bespoke footcare to their diabetic patients.

Previous research has shown that the stiffness of the materials used to cushion diabetic patients' feet influences how well they respond to such treatment. However, there are currently no set guidelines that can inform healthcare professionals about which stiffness is optimal for which patients. According to Chatzistergos, practitioners currently fall back on empirical and anecdotal evidence when making such decisions.

As part of ongoing research into diabetic footwear, the team at Staffordshire along with their collaborators set out to find scientific evidence upon which to base such decisions. A range of different bespoke polyurethane (BPU) cushioning materials were manufactured, using standard footwear manufacturing techniques and commercially available chemical compounds. These materials produced had the same mechanical qualities but differed in how stiff they were. Various mechanical tests were then performed using a 3D-printed model of a heel, as well as the feet of ten healthy adult volunteers. Pressure measurements were taken of the entire area of the foot to assess the mechanical characteristics and especially the cushioning properties of the insole materials being tested.

The findings highlight the importance of considering a person's weight and body mass index (BMI) when choosing cushioning materials. People, who weigh more or have a higher BMI, need stiffer insole or footwear material to reduce pressure. Different materials might also be needed for a patient's left and right foot, because pressure is not normally distributed equally across a person's feet.

The results further indicate that optimising the stiffness of cushioning materials can reduce pressure during standing and walking by at least 16% and 19% respectively. The type of material that minimizes pressure at best when a person stands or walks was also found to differ. Stiffer materials are for instance needed for walking. According to Chatzistergos, this means that health workers should consider different cushioning material for their highly active patients compared to those who lead sedentary lives.

"Using different material to minimise pressure could further enhance the offloading capacity of therapeutic footwear and orthoses, as long as it doesn't have a detrimental effect on gait and postural balance," adds Chatzistergos, who notes that more testing is needed to develop clinically relevant material selection methods. The findings indicate that optimum stiffness could possibly be predicted without the need for lengthy and expensive measurements such as gait analysis and plantar pressure measurements, which will have an influence on effective clinical management.

Nachiappan Chockalingam, who leads the clinical biomechanics team at Staffordshire University said: "Every 20 seconds someone in the world is losing their limbs to diabetic foot complications. Our work focuses on prognosis and prevention of diabetic foot complications in addition to effective treatment options. We strongly believe that this study will influence the material selection process for any prescription footwear.".
Reference: Chatzistergos, P. et al (2017). Subject specific optimisation of the stiffness of footwear material for maximum plantar pressure reduction, Annals of Biomedical Engineering, DOI: 10.1007/s10439-017-1826-4


Related Biomedical Engineering Articles:

Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.
Researchers design superhydrophobic 'nanoflower' for biomedical applications
Plant leaves have a natural superpower -- they're designed with water repelling characteristics.
Transparency and reproducibility of biomedical research is improving
New research publishing Nov. 20 in the open-access journal PLOS Biology from Joshua Wallach, Kevin Boyack, and John Ioannidis suggests that progress has been made in key areas of research transparency and reproducibility.
A pill for delivering biomedical micromotors
Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality.
Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.
More Biomedical Engineering News and Biomedical Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...