Nav: Home

From where will the next big earthquake hit the city of Istanbul?

May 16, 2017

The city of Istanbul is focus of great concern for earthquake researchers. This 15-million metropole is situated very close to the so-called North Anatolian Fault Zone which runs just outside of the city gates below the Marmara Sea. Here in the underground there is a constant build-up of energy which results from an interlocking of the tectonic plates causing plate movement to come to a halt until a great tremor releases this energy. Scientists, therefore, reckon with an earthquake with a magnitude of 7 or greater in this region in the coming years.

The extent of such seismic threat to this Turkish city of Istanbul actually depends on how strongly the plates are entangled and on the exact nucleation point of the earthquake. A team led by Marco Bohnhoff from the GFZ German Research Centre for Geoscience now presents a study indicating that the next major earthquake is more likely to originate in Istanbul's eastern Marmara Sea. "This is both good news and bad news for the city with over 15 million inhabitants. The good news: "The rupture propagation will then run eastwards i.e. away from the city", explains the researcher. "The bad news is that there will only be a very short early warning phase of a few seconds." Early warning times are extremely important in order to switch traffic lights to red, to block tunnels and bridges or to shut down critical infrastructure. The research results are now published in the scientific journal "Geophysical Journal International".

The estimations presented by Marco Bohnhoff and his team are based on the analysis of numerous small quakes along the Marmara fault. Results have shown that the degree of locking in the western part of the fracture zone is lower and that the two tectonic plates are creeping past one another at a very slow rate. During this process small tremors of the same signature, so-called "repeaters", occur at distinct recurrence times. Further east, close to Istanbul, however, repeaters have not been observed and the tectonic plates appear to be completely locked here. This leads to a build-up of tectonic energy and increases the probability of a large earthquake there.

Such observations were possible due to a new high-precision seismicity catalog for the region. For this purpose, the researchers have thoroughly evaluated the earthquake activity by combining the two major Turkish Earthquake Measurement Networks with measurement data from the GFZ Plate Boarder Observatory within the framework of a German-Turkish cooperation project. "In this way we have found recurring earthquakes below the western Marmara Sea" says Bohnhoff. "From this we deduce that below the western Marmara Sea the two tectonic plates (for the most part -- 25-75%) are moving slowly past each other thus accumulating less energy than if they were completely locked."

And what will happen if it actually comes to the feared strong earthquake below the western Marmara Sea? "In such a case there would likewise be good news and bad news," says Bohnhoff. Good would be a somewhat longer early warning period, bad would be the fact that the rupture propagation would then take place in the direction of Istanbul resulting in more severe ground shaking than if the origin was further east. However, the current data obtained suggests the opposite: an earthquake with an epicenter at the gates of the city, which would allow the people only very little time to find protection, but which would trigger less powerful ground movements.
-end-


GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Earthquake Articles:

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.
Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.
Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.