Nav: Home

Vitamin D promotes fatty acid oxidation in zebrafish adipose tissue

May 16, 2017

The ancient hormone Vitamin D3 is synthesized by a photochemical conversion process. The intact vitamin D (VD)/vitamin D receptor (VDR) system has been found in all vertebrates. The main function of VD/VDR signaling is well-recognized in the regulation of mineral homeostasis.

Over the last few decades, the relationship between the deficiency of VD/VDR signaling and adiposity has been suggested, based on observational and longitudinal cohort studies of various populations. However, the precise mechanism of the nonskeletal function of VD involved in adiposity has not been established at the cellular and physiological levels.

1α,25(OH)2D3 is the principal active hormonal form of vitamin D3 and is responsible for most of VD's biological actions. The activation of Vitamin D3 from the skin involves two consecutive hydroxylation steps at C-25 and C-1α sites by 25-hydroxylases (for example, cytochrome C P450 member 2R1, CYP2R1) and 1α-hydroxylase (CYP27B1), respectively.

Initially, a Chinese research team led by Prof. YIN Zhan at the Institute of Hydrobiology of the Chinese Academy of Sciences discovered an inverse correlation between the plasma levels of 1,25(OH)2D3 and body lipid content during zebrafish development and aging.

In order to clarify the potential roles of 1α,25(OH)2D3 in lipid metabolism, two independent cyp2r1-depleted zebrafish mutant lines were generated by this research team using a genetic approach.

The cyp2r1-deficient fish -- with 1,25(OH)2D3 plasma levels in the mutants about 32% of the level in the control siblings -- exhibited obvious retarded somatic growth and increased accumulation of adipose tissue. This indicates a role for 1α,25(OH)2D3 in lipid mobilization as well.

Using the Chromatin Immunoprecipitation (ChIP)-PCR technique, genomic regulatory regions of peroxisome proliferator-activated receptor gamma, coactivator 1α (pgc1a), a gene involved in lipid metabolism, especially in mitochondrial function, was found to interact with VDR in zebrafish liver and visceral adipose tissues (VAT).

Researchers also found that the putative DNA-binding sites of VDR and retinoid X receptors (RXR) found in the pgc1a promoter region were both necessary for pgc1a activation by 1,25(OH)2D3 in zebrafish. This suggests that the stimulation of pgc1a by 1,25(OH)2D3 is mediated by VDR-RXR heterodimers, which is a common feature of VDR signaling.

The research confirmed significant reductions in the levels of mitochondrial biogenesis, mitochondrial membrane potential, and free fatty acid oxidation activity in cyp2r1-deficient VAT. Therefore, the results demonstrated the regulation of 1α,25(OH)2D3 during lipid metabolism through the regulation of Pgc1a for mitochondrial biogenesis and oxidative metabolism in zebrafish VAT. The study was published in Cell Reports.

The study suggests a basal nonskeletal effect of ancient VD/VDR signaling in teleosts during early evolution, which may also shed light on the mechanisms underlying the relationship between the deficiency of VD/VDR signaling and adiposity that has been observed in mammals.

Chinese Academy of Sciences Headquarters

Related Zebrafish Articles:

How do zebrafish get their stripes? New data analysis tool could provide an answer
A new mathematical tool developed at Brown could help scientists better understand how zebrafish get their stripes as well as other self-assembled patterns in nature.
Zebrafish teach researchers more about atrial fibrillation
Genetic research in zebrafish at the University of Copenhagen has surprised the researchers behind the study.
How decisions unfold in a zebrafish brain
Researchers were able to track the activity of each neuron in the entire brain of zebrafish larvae and reconstruct the unfolding of neuronal events as the animals repeatedly made 'left or right' choices in a behavioral experiment.
'Census' in the zebrafish's brain
Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a 'census' in their brains.
Zebrafish 'avatars' can help decide who should receive radiotherapy treatment
To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients.
Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.
Survival of the zebrafish: Mate, or flee?
*Researchers have found that when making decisions that are important to the species' survival, zebrafish choose to mate rather than to flee from a threat.
Zebrafish capture a 'window' on the cancer process
Cancer-related inflammation impacts significantly on cancer development and progression. New research has observed in zebrafish, for the first time, that inflammatory cells use weak spots or micro-perforations in the extracellular matrix barrier layer to access skin cancer cells.
How a zebrafish could help solve the mysteries of genetic brain disease
A close look at the rapidly developing zebrafish embryo is helping neuroscientists better understand the potential underpinnings of brain disorders, including autism and schizophrenia.
Zebrafish help unlock mystery of motor neurone disease
Scientists from the University of Sheffield have successfully created zebrafish that carry the complex genetic change known to cause the most common genetic form of motor neurone disease (MND).
More Zebrafish News and Zebrafish Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at