Nav: Home

Refining the ocean's thermometer

May 16, 2017

Chronicling Earth's past temperature swings is a basic part of understanding climate change. One of the best records of past ocean temperatures can be found in the shells of marine creatures called foraminifera.

Known as "forams" for short, these single-celled plankton build microscopic calcite shells. When forams die, their shells fall to the ocean floor and accumulate in sediments that provide a record of past climate. The surface-feeding plankton are natural thermometers because the chemical makeup of foram shells is linked to the environmental conditions they grow in. For example, the levels of magnesium in foram shells reflect the seawater temperature in which they lived.

Ideally, forams would act as "perfect chemists" by incorporating magnesium and calcium according to well-understood chemical relationships, said study co-author Ann Russell, a researcher in paleoceanography at UC Davis. But many foram shells have alternating bands of high and low magnesium levels within their calcite shells that cannot be explained by temperature alone. These bands are only a few microns wide.

"We need to have confidence that we understand the causes of variability and the mechanisms of biological control over magnesium, and as much as we can about how the shells form," Russell said.

Light/Dark Cycles Drive Magnesium Bands

Recent experiments led by UC Davis scientists show magnesium levels vary in foram shells due to different growth rates during daily light/dark cycles. The findings were published May 15 in the journal Nature Communications.

Earlier research at UC Davis and elsewhere had already hinted that changing sunlight levels influence shell chemistry. To investigate this idea, the research team grew foraminifera in controlled light conditions and then analyzed the shells. The team directly measured the levels of magnesium and other trace elements in the shells with high-resolution imaging techniques called laser ablation ICP-MS and NanoSIMS image mapping.

"These are amazing techniques for understanding how growth conditions affect shell geochemistry," said lead study author Jennifer Fehrenbacher, an assistant professor of tracer oceanography at Oregon State University. Fehrenbacher led the research while she was a postdoctoral fellow at UC Davis.

The results will help increase confidence in plankton as climate records, the researchers said.

"Understanding foraminifera growth patterns is essential for understanding the mechanisms responsible for their shell chemistry and for properly interpreting past temperature records," Fehrenbacher said.
-end-
The team included Professor Howard Spero and graduate student Catherine Davis from UC Davis, Alexander Gagnon at the University of Washington and John Cliff and Zihua Zhu at the U.S. Department of Energy's Pacific Northwest National Laboratory, and Pamela Martin. The work was supported by the National Science Foundation and the Department of Energy.

University of California - Davis

Related Plankton Articles:

UCI-led study: Plankton are more resilient to nutrient stress than previously thought
Surface ocean phosphate is a key mineral supporting the growth and diversification of phytoplankton, a marine organism the absorbs significant amounts of carbon dioxide from Earth's atmosphere.
Ancient plankton help researchers predict near-future climate
Temperature data inferred from plankton fossils from the Pliocene, an era with CO2 levels similar to today's, allowed a UA-led team to rectify discrepancies between climate models and other proxy temperature measurements.
Dinoflagellate plankton glow so that their predators won't eat them
Some dinoflagellate plankton species are bioluminescent, with a remarkable ability to produce light to make themselves and the water they swim in glow.
Plankton as a climate driver instead of the sun?
Fluctuations in the orbital parameters of the Earth are considered to be the trigger for long-term climatic fluctuations such as ice ages.
How predatory plankton created modern ecosystems after 'Snowball Earth'
After global glaciation, predatory plankton apparently enabled the development of today's ecosystems.
More Plankton News and Plankton Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...