Nav: Home

Refining the ocean's thermometer

May 16, 2017

Chronicling Earth's past temperature swings is a basic part of understanding climate change. One of the best records of past ocean temperatures can be found in the shells of marine creatures called foraminifera.

Known as "forams" for short, these single-celled plankton build microscopic calcite shells. When forams die, their shells fall to the ocean floor and accumulate in sediments that provide a record of past climate. The surface-feeding plankton are natural thermometers because the chemical makeup of foram shells is linked to the environmental conditions they grow in. For example, the levels of magnesium in foram shells reflect the seawater temperature in which they lived.

Ideally, forams would act as "perfect chemists" by incorporating magnesium and calcium according to well-understood chemical relationships, said study co-author Ann Russell, a researcher in paleoceanography at UC Davis. But many foram shells have alternating bands of high and low magnesium levels within their calcite shells that cannot be explained by temperature alone. These bands are only a few microns wide.

"We need to have confidence that we understand the causes of variability and the mechanisms of biological control over magnesium, and as much as we can about how the shells form," Russell said.

Light/Dark Cycles Drive Magnesium Bands

Recent experiments led by UC Davis scientists show magnesium levels vary in foram shells due to different growth rates during daily light/dark cycles. The findings were published May 15 in the journal Nature Communications.

Earlier research at UC Davis and elsewhere had already hinted that changing sunlight levels influence shell chemistry. To investigate this idea, the research team grew foraminifera in controlled light conditions and then analyzed the shells. The team directly measured the levels of magnesium and other trace elements in the shells with high-resolution imaging techniques called laser ablation ICP-MS and NanoSIMS image mapping.

"These are amazing techniques for understanding how growth conditions affect shell geochemistry," said lead study author Jennifer Fehrenbacher, an assistant professor of tracer oceanography at Oregon State University. Fehrenbacher led the research while she was a postdoctoral fellow at UC Davis.

The results will help increase confidence in plankton as climate records, the researchers said.

"Understanding foraminifera growth patterns is essential for understanding the mechanisms responsible for their shell chemistry and for properly interpreting past temperature records," Fehrenbacher said.
-end-
The team included Professor Howard Spero and graduate student Catherine Davis from UC Davis, Alexander Gagnon at the University of Washington and John Cliff and Zihua Zhu at the U.S. Department of Energy's Pacific Northwest National Laboratory, and Pamela Martin. The work was supported by the National Science Foundation and the Department of Energy.

University of California - Davis

Related Plankton Articles:

A changing climate affects plankton populations
Data from a global oceanographic expedition predict how rising temperatures influence growth of plankton populations.
How plankton and bacteria shape ocean spray
As the oceans ebb and flow, the resulting waves and splashes form tiny bubbles.The bubbles burst and release a vapor -- called sea spray aerosol -- into the air.
Tiny plankton wields biological 'Gatling gun' in microbial Wild West
Researchers have obtained an unprecedented view of the 'ballistic' weaponry of planktonic microbes, including one that can fire projectiles as if wielding a Gatling gun.
How plankton cope with turbulence
Microscopic marine plankton are not helplessly adrift in the ocean.
Space-based lidar shines new light on plankton
A space-based sensor that can 'see' through fog, clouds and darkness has given scientists their first continuous look at the boom-bust cycles that drive polar plankton communities.
Dispersal, the key for understanding marine biodiversity
Dispersal plays a key role to connect populations, and contrastingly, its moderate limitation is one of the main processes to maintain species coexistence and promote regional biodiversity.
Temperature, not predatory pressures, drives plankton abundance
Plankton blooms in spring are largely driven by temperature-induced increases in cell division, a new study reveals.
Rising water temperatures and acidification affect important plankton organism
In an experiment with organisms from the Kiel Fjord, a team of biologists from GEOMAR Helmholtz Centre for Ocean Research Kiel demonstrated for the first time, that ocean acidification and rising water temperatures harms the fatty acid composition of copepods in the natural plankton community.
For ancient deep-sea plankton, a long decline before extinction
A new study of nearly 22,000 fossils finds that ancient plankton communities began changing in important ways as much as 400,000 years before massive die-offs ensued during the first of Earth's five great extinctions.
Plankton feces could move plastic pollution to the ocean depths
Plastic waste could find its way deep into the ocean through the feces of plankton, new research from the University of Exeter and Plymouth Marine Laboratory shows.

Related Plankton Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...